| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashgcdlem.a |
|
| 2 |
|
hashgcdlem.b |
|
| 3 |
|
hashgcdlem.f |
|
| 4 |
|
oveq1 |
|
| 5 |
4
|
eqeq1d |
|
| 6 |
5 1
|
elrab2 |
|
| 7 |
|
elfzonn0 |
|
| 8 |
7
|
ad2antrl |
|
| 9 |
|
nnnn0 |
|
| 10 |
9
|
3ad2ant2 |
|
| 11 |
10
|
adantr |
|
| 12 |
8 11
|
nn0mulcld |
|
| 13 |
|
simpl1 |
|
| 14 |
|
elfzolt2 |
|
| 15 |
14
|
ad2antrl |
|
| 16 |
|
elfzoelz |
|
| 17 |
16
|
ad2antrl |
|
| 18 |
17
|
zred |
|
| 19 |
|
nnre |
|
| 20 |
19
|
3ad2ant1 |
|
| 21 |
20
|
adantr |
|
| 22 |
|
nnre |
|
| 23 |
|
nngt0 |
|
| 24 |
22 23
|
jca |
|
| 25 |
24
|
3ad2ant2 |
|
| 26 |
25
|
adantr |
|
| 27 |
|
ltmuldiv |
|
| 28 |
18 21 26 27
|
syl3anc |
|
| 29 |
15 28
|
mpbird |
|
| 30 |
|
elfzo0 |
|
| 31 |
12 13 29 30
|
syl3anbrc |
|
| 32 |
|
nncn |
|
| 33 |
32
|
3ad2ant1 |
|
| 34 |
|
nncn |
|
| 35 |
34
|
3ad2ant2 |
|
| 36 |
|
nnne0 |
|
| 37 |
36
|
3ad2ant2 |
|
| 38 |
33 35 37
|
divcan1d |
|
| 39 |
38
|
adantr |
|
| 40 |
39
|
eqcomd |
|
| 41 |
40
|
oveq2d |
|
| 42 |
|
nndivdvds |
|
| 43 |
42
|
biimp3a |
|
| 44 |
43
|
nnzd |
|
| 45 |
44
|
adantr |
|
| 46 |
|
mulgcdr |
|
| 47 |
17 45 11 46
|
syl3anc |
|
| 48 |
|
simprr |
|
| 49 |
48
|
oveq1d |
|
| 50 |
35
|
mullidd |
|
| 51 |
50
|
adantr |
|
| 52 |
49 51
|
eqtrd |
|
| 53 |
41 47 52
|
3eqtrd |
|
| 54 |
|
oveq1 |
|
| 55 |
54
|
eqeq1d |
|
| 56 |
55 2
|
elrab2 |
|
| 57 |
31 53 56
|
sylanbrc |
|
| 58 |
6 57
|
sylan2b |
|
| 59 |
|
oveq1 |
|
| 60 |
59
|
eqeq1d |
|
| 61 |
60 2
|
elrab2 |
|
| 62 |
|
simprr |
|
| 63 |
|
elfzoelz |
|
| 64 |
63
|
ad2antrl |
|
| 65 |
|
simpl1 |
|
| 66 |
65
|
nnzd |
|
| 67 |
|
gcddvds |
|
| 68 |
64 66 67
|
syl2anc |
|
| 69 |
68
|
simpld |
|
| 70 |
62 69
|
eqbrtrrd |
|
| 71 |
|
nnz |
|
| 72 |
71
|
3ad2ant2 |
|
| 73 |
72
|
adantr |
|
| 74 |
37
|
adantr |
|
| 75 |
|
dvdsval2 |
|
| 76 |
73 74 64 75
|
syl3anc |
|
| 77 |
70 76
|
mpbid |
|
| 78 |
|
elfzofz |
|
| 79 |
78
|
ad2antrl |
|
| 80 |
|
elfznn0 |
|
| 81 |
|
nn0re |
|
| 82 |
|
nn0ge0 |
|
| 83 |
81 82
|
jca |
|
| 84 |
79 80 83
|
3syl |
|
| 85 |
25
|
adantr |
|
| 86 |
|
divge0 |
|
| 87 |
84 85 86
|
syl2anc |
|
| 88 |
|
elnn0z |
|
| 89 |
77 87 88
|
sylanbrc |
|
| 90 |
43
|
adantr |
|
| 91 |
|
elfzolt2 |
|
| 92 |
91
|
ad2antrl |
|
| 93 |
64
|
zred |
|
| 94 |
20
|
adantr |
|
| 95 |
|
ltdiv1 |
|
| 96 |
93 94 85 95
|
syl3anc |
|
| 97 |
92 96
|
mpbid |
|
| 98 |
|
elfzo0 |
|
| 99 |
89 90 97 98
|
syl3anbrc |
|
| 100 |
62
|
oveq1d |
|
| 101 |
|
simpl2 |
|
| 102 |
|
simpl3 |
|
| 103 |
|
gcddiv |
|
| 104 |
64 66 101 70 102 103
|
syl32anc |
|
| 105 |
35 37
|
dividd |
|
| 106 |
105
|
adantr |
|
| 107 |
100 104 106
|
3eqtr3d |
|
| 108 |
|
oveq1 |
|
| 109 |
108
|
eqeq1d |
|
| 110 |
109 1
|
elrab2 |
|
| 111 |
99 107 110
|
sylanbrc |
|
| 112 |
61 111
|
sylan2b |
|
| 113 |
6
|
simplbi |
|
| 114 |
61
|
simplbi |
|
| 115 |
113 114
|
anim12i |
|
| 116 |
63
|
ad2antll |
|
| 117 |
116
|
zcnd |
|
| 118 |
35
|
adantr |
|
| 119 |
37
|
adantr |
|
| 120 |
117 118 119
|
divcan1d |
|
| 121 |
120
|
eqcomd |
|
| 122 |
|
oveq1 |
|
| 123 |
122
|
eqeq2d |
|
| 124 |
121 123
|
syl5ibrcom |
|
| 125 |
16
|
ad2antrl |
|
| 126 |
125
|
zcnd |
|
| 127 |
126 118 119
|
divcan4d |
|
| 128 |
127
|
eqcomd |
|
| 129 |
|
oveq1 |
|
| 130 |
129
|
eqeq2d |
|
| 131 |
128 130
|
syl5ibrcom |
|
| 132 |
124 131
|
impbid |
|
| 133 |
115 132
|
sylan2 |
|
| 134 |
3 58 112 133
|
f1o2d |
|