Metamath Proof Explorer


Theorem prmdvdsncoprmbd

Description: Two positive integers are not coprime iff a prime divides both integers. Deduction version of ncoprmgcdne1b with the existential quantifier over the primes instead of integers greater than or equal to 2. (Contributed by SN, 24-Aug-2024)

Ref Expression
Hypotheses prmdvdsncoprmbd.a φA
prmdvdsncoprmbd.b φB
Assertion prmdvdsncoprmbd φppApBAgcdB1

Proof

Step Hyp Ref Expression
1 prmdvdsncoprmbd.a φA
2 prmdvdsncoprmbd.b φB
3 prmuz2 pp2
4 3 a1i φpp2
5 4 anim1d φppApBp2pApB
6 5 reximdv2 φppApBp2pApB
7 breq1 p=ipAiA
8 breq1 p=ipBiB
9 7 8 anbi12d p=ipApBiAiB
10 9 cbvrexvw p2pApBi2iAiB
11 6 10 imbitrdi φppApBi2iAiB
12 exprmfct i2ppi
13 12 ad2antrl φi2iAiBppi
14 prmnn pp
15 14 ad2antlr φi2iAiBppip
16 15 nnzd φi2iAiBppip
17 eluzelz i2i
18 17 ad2antrr i2iAiBpii
19 18 ad4ant24 φi2iAiBppii
20 1 ad3antrrr φi2iAiBppiA
21 20 nnzd φi2iAiBppiA
22 simpr φi2iAiBppipi
23 simprrl φi2iAiBiA
24 23 ad2antrr φi2iAiBppiiA
25 16 19 21 22 24 dvdstrd φi2iAiBppipA
26 2 ad3antrrr φi2iAiBppiB
27 26 nnzd φi2iAiBppiB
28 simprrr φi2iAiBiB
29 28 ad2antrr φi2iAiBppiiB
30 16 19 27 22 29 dvdstrd φi2iAiBppipB
31 25 30 jca φi2iAiBppipApB
32 31 ex φi2iAiBppipApB
33 32 reximdva φi2iAiBppippApB
34 13 33 mpd φi2iAiBppApB
35 34 rexlimdvaa φi2iAiBppApB
36 11 35 impbid φppApBi2iAiB
37 ncoprmgcdne1b ABi2iAiBAgcdB1
38 1 2 37 syl2anc φi2iAiBAgcdB1
39 36 38 bitrd φppApBAgcdB1