Description: Two positive integers are not coprime iff a prime divides both integers. Deduction version of ncoprmgcdne1b with the existential quantifier over the primes instead of integers greater than or equal to 2. (Contributed by SN, 24-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prmdvdsncoprmbd.a | |
|
prmdvdsncoprmbd.b | |
||
Assertion | prmdvdsncoprmbd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmdvdsncoprmbd.a | |
|
2 | prmdvdsncoprmbd.b | |
|
3 | prmuz2 | |
|
4 | 3 | a1i | |
5 | 4 | anim1d | |
6 | 5 | reximdv2 | |
7 | breq1 | |
|
8 | breq1 | |
|
9 | 7 8 | anbi12d | |
10 | 9 | cbvrexvw | |
11 | 6 10 | imbitrdi | |
12 | exprmfct | |
|
13 | 12 | ad2antrl | |
14 | prmnn | |
|
15 | 14 | ad2antlr | |
16 | 15 | nnzd | |
17 | eluzelz | |
|
18 | 17 | ad2antrr | |
19 | 18 | ad4ant24 | |
20 | 1 | ad3antrrr | |
21 | 20 | nnzd | |
22 | simpr | |
|
23 | simprrl | |
|
24 | 23 | ad2antrr | |
25 | 16 19 21 22 24 | dvdstrd | |
26 | 2 | ad3antrrr | |
27 | 26 | nnzd | |
28 | simprrr | |
|
29 | 28 | ad2antrr | |
30 | 16 19 27 22 29 | dvdstrd | |
31 | 25 30 | jca | |
32 | 31 | ex | |
33 | 32 | reximdva | |
34 | 13 33 | mpd | |
35 | 34 | rexlimdvaa | |
36 | 11 35 | impbid | |
37 | ncoprmgcdne1b | |
|
38 | 1 2 37 | syl2anc | |
39 | 36 38 | bitrd | |