Metamath Proof Explorer


Theorem prmgaplem2

Description: Lemma for prmgap : The factorial of a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 13-Aug-2020)

Ref Expression
Assertion prmgaplem2 NI2N1<N!+IgcdI

Proof

Step Hyp Ref Expression
1 elfzuz I2NI2
2 1 adantl NI2NI2
3 breq1 i=IiN!+IIN!+I
4 breq1 i=IiIII
5 3 4 anbi12d i=IiN!+IiIIN!+III
6 5 adantl NI2Ni=IiN!+IiIIN!+III
7 prmgaplem1 NI2NIN!+I
8 elfzelz I2NI
9 iddvds III
10 8 9 syl I2NII
11 10 adantl NI2NII
12 7 11 jca NI2NIN!+III
13 2 6 12 rspcedvd NI2Ni2iN!+IiI
14 nnnn0 NN0
15 14 faccld NN!
16 15 adantr NI2NN!
17 eluz2nn I2I
18 1 17 syl I2NI
19 18 adantl NI2NI
20 16 19 nnaddcld NI2NN!+I
21 ncoprmgcdgt1b N!+IIi2iN!+IiI1<N!+IgcdI
22 20 19 21 syl2anc NI2Ni2iN!+IiI1<N!+IgcdI
23 13 22 mpbid NI2N1<N!+IgcdI