Metamath Proof Explorer


Theorem prmgaplem2

Description: Lemma for prmgap : The factorial of a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 13-Aug-2020)

Ref Expression
Assertion prmgaplem2 N I 2 N 1 < N ! + I gcd I

Proof

Step Hyp Ref Expression
1 elfzuz I 2 N I 2
2 1 adantl N I 2 N I 2
3 breq1 i = I i N ! + I I N ! + I
4 breq1 i = I i I I I
5 3 4 anbi12d i = I i N ! + I i I I N ! + I I I
6 5 adantl N I 2 N i = I i N ! + I i I I N ! + I I I
7 prmgaplem1 N I 2 N I N ! + I
8 elfzelz I 2 N I
9 iddvds I I I
10 8 9 syl I 2 N I I
11 10 adantl N I 2 N I I
12 7 11 jca N I 2 N I N ! + I I I
13 2 6 12 rspcedvd N I 2 N i 2 i N ! + I i I
14 nnnn0 N N 0
15 14 faccld N N !
16 15 adantr N I 2 N N !
17 eluz2nn I 2 I
18 1 17 syl I 2 N I
19 18 adantl N I 2 N I
20 16 19 nnaddcld N I 2 N N ! + I
21 ncoprmgcdgt1b N ! + I I i 2 i N ! + I i I 1 < N ! + I gcd I
22 20 19 21 syl2anc N I 2 N i 2 i N ! + I i I 1 < N ! + I gcd I
23 13 22 mpbid N I 2 N 1 < N ! + I gcd I