Metamath Proof Explorer


Theorem prmidlval

Description: The class of prime ideals of a ring R . (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Thierry Arnoux, 12-Jan-2024)

Ref Expression
Hypotheses prmidlval.1 B=BaseR
prmidlval.2 ·˙=R
Assertion prmidlval Could not format assertion : No typesetting found for |- ( R e. Ring -> ( PrmIdeal ` R ) = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. a e. ( LIdeal ` R ) A. b e. ( LIdeal ` R ) ( A. x e. a A. y e. b ( x .x. y ) e. i -> ( a C_ i \/ b C_ i ) ) ) } ) with typecode |-

Proof

Step Hyp Ref Expression
1 prmidlval.1 B=BaseR
2 prmidlval.2 ·˙=R
3 df-prmidl Could not format PrmIdeal = ( r e. Ring |-> { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. a e. ( LIdeal ` r ) A. b e. ( LIdeal ` r ) ( A. x e. a A. y e. b ( x ( .r ` r ) y ) e. i -> ( a C_ i \/ b C_ i ) ) ) } ) : No typesetting found for |- PrmIdeal = ( r e. Ring |-> { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. a e. ( LIdeal ` r ) A. b e. ( LIdeal ` r ) ( A. x e. a A. y e. b ( x ( .r ` r ) y ) e. i -> ( a C_ i \/ b C_ i ) ) ) } ) with typecode |-
4 fveq2 r=RLIdealr=LIdealR
5 fveq2 r=RBaser=BaseR
6 5 1 eqtr4di r=RBaser=B
7 6 neeq2d r=RiBaseriB
8 fveq2 r=Rr=R
9 8 2 eqtr4di r=Rr=·˙
10 9 oveqd r=Rxry=x·˙y
11 10 eleq1d r=Rxryix·˙yi
12 11 2ralbidv r=Rxaybxryixaybx·˙yi
13 12 imbi1d r=Rxaybxryiaibixaybx·˙yiaibi
14 4 13 raleqbidv r=RbLIdealrxaybxryiaibibLIdealRxaybx·˙yiaibi
15 4 14 raleqbidv r=RaLIdealrbLIdealrxaybxryiaibiaLIdealRbLIdealRxaybx·˙yiaibi
16 7 15 anbi12d r=RiBaseraLIdealrbLIdealrxaybxryiaibiiBaLIdealRbLIdealRxaybx·˙yiaibi
17 4 16 rabeqbidv r=RiLIdealr|iBaseraLIdealrbLIdealrxaybxryiaibi=iLIdealR|iBaLIdealRbLIdealRxaybx·˙yiaibi
18 id RRingRRing
19 eqid iLIdealR|iBaLIdealRbLIdealRxaybx·˙yiaibi=iLIdealR|iBaLIdealRbLIdealRxaybx·˙yiaibi
20 fvexd RRingLIdealRV
21 19 20 rabexd RRingiLIdealR|iBaLIdealRbLIdealRxaybx·˙yiaibiV
22 3 17 18 21 fvmptd3 Could not format ( R e. Ring -> ( PrmIdeal ` R ) = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. a e. ( LIdeal ` R ) A. b e. ( LIdeal ` R ) ( A. x e. a A. y e. b ( x .x. y ) e. i -> ( a C_ i \/ b C_ i ) ) ) } ) : No typesetting found for |- ( R e. Ring -> ( PrmIdeal ` R ) = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. a e. ( LIdeal ` R ) A. b e. ( LIdeal ` R ) ( A. x e. a A. y e. b ( x .x. y ) e. i -> ( a C_ i \/ b C_ i ) ) ) } ) with typecode |-