Description: The class of prime ideals of a ring R . (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Thierry Arnoux, 12-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prmidlval.1 | |
|
prmidlval.2 | |
||
Assertion | prmidlval | Could not format assertion : No typesetting found for |- ( R e. Ring -> ( PrmIdeal ` R ) = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. a e. ( LIdeal ` R ) A. b e. ( LIdeal ` R ) ( A. x e. a A. y e. b ( x .x. y ) e. i -> ( a C_ i \/ b C_ i ) ) ) } ) with typecode |- |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmidlval.1 | |
|
2 | prmidlval.2 | |
|
3 | df-prmidl | Could not format PrmIdeal = ( r e. Ring |-> { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. a e. ( LIdeal ` r ) A. b e. ( LIdeal ` r ) ( A. x e. a A. y e. b ( x ( .r ` r ) y ) e. i -> ( a C_ i \/ b C_ i ) ) ) } ) : No typesetting found for |- PrmIdeal = ( r e. Ring |-> { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. a e. ( LIdeal ` r ) A. b e. ( LIdeal ` r ) ( A. x e. a A. y e. b ( x ( .r ` r ) y ) e. i -> ( a C_ i \/ b C_ i ) ) ) } ) with typecode |- | |
4 | fveq2 | |
|
5 | fveq2 | |
|
6 | 5 1 | eqtr4di | |
7 | 6 | neeq2d | |
8 | fveq2 | |
|
9 | 8 2 | eqtr4di | |
10 | 9 | oveqd | |
11 | 10 | eleq1d | |
12 | 11 | 2ralbidv | |
13 | 12 | imbi1d | |
14 | 4 13 | raleqbidv | |
15 | 4 14 | raleqbidv | |
16 | 7 15 | anbi12d | |
17 | 4 16 | rabeqbidv | |
18 | id | |
|
19 | eqid | |
|
20 | fvexd | |
|
21 | 19 20 | rabexd | |
22 | 3 17 18 21 | fvmptd3 | Could not format ( R e. Ring -> ( PrmIdeal ` R ) = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. a e. ( LIdeal ` R ) A. b e. ( LIdeal ` R ) ( A. x e. a A. y e. b ( x .x. y ) e. i -> ( a C_ i \/ b C_ i ) ) ) } ) : No typesetting found for |- ( R e. Ring -> ( PrmIdeal ` R ) = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. a e. ( LIdeal ` R ) A. b e. ( LIdeal ` R ) ( A. x e. a A. y e. b ( x .x. y ) e. i -> ( a C_ i \/ b C_ i ) ) ) } ) with typecode |- |