Metamath Proof Explorer


Theorem prodfdiv

Description: The quotient of two infinite products. (Contributed by Scott Fenton, 15-Jan-2018)

Ref Expression
Hypotheses prodfdiv.1 φNM
prodfdiv.2 φkMNFk
prodfdiv.3 φkMNGk
prodfdiv.4 φkMNGk0
prodfdiv.5 φkMNHk=FkGk
Assertion prodfdiv φseqM×HN=seqM×FNseqM×GN

Proof

Step Hyp Ref Expression
1 prodfdiv.1 φNM
2 prodfdiv.2 φkMNFk
3 prodfdiv.3 φkMNGk
4 prodfdiv.4 φkMNGk0
5 prodfdiv.5 φkMNHk=FkGk
6 fveq2 n=kGn=Gk
7 6 oveq2d n=k1Gn=1Gk
8 eqid nMN1Gn=nMN1Gn
9 ovex 1GkV
10 7 8 9 fvmpt kMNnMN1Gnk=1Gk
11 10 adantl φkMNnMN1Gnk=1Gk
12 1 3 4 11 prodfrec φseqM×nMN1GnN=1seqM×GN
13 12 oveq2d φseqM×FNseqM×nMN1GnN=seqM×FN1seqM×GN
14 eleq1w k=nkMNnMN
15 14 anbi2d k=nφkMNφnMN
16 fveq2 k=nGk=Gn
17 16 eleq1d k=nGkGn
18 15 17 imbi12d k=nφkMNGkφnMNGn
19 18 3 chvarvv φnMNGn
20 16 neeq1d k=nGk0Gn0
21 15 20 imbi12d k=nφkMNGk0φnMNGn0
22 21 4 chvarvv φnMNGn0
23 19 22 reccld φnMN1Gn
24 23 fmpttd φnMN1Gn:MN
25 24 ffvelcdmda φkMNnMN1Gnk
26 2 3 4 divrecd φkMNFkGk=Fk1Gk
27 11 oveq2d φkMNFknMN1Gnk=Fk1Gk
28 26 5 27 3eqtr4d φkMNHk=FknMN1Gnk
29 1 2 25 28 prodfmul φseqM×HN=seqM×FNseqM×nMN1GnN
30 mulcl kxkx
31 30 adantl φkxkx
32 1 2 31 seqcl φseqM×FN
33 1 3 31 seqcl φseqM×GN
34 1 3 4 prodfn0 φseqM×GN0
35 32 33 34 divrecd φseqM×FNseqM×GN=seqM×FN1seqM×GN
36 13 29 35 3eqtr4d φseqM×HN=seqM×FNseqM×GN