Description: The quotient of two infinite products. (Contributed by Scott Fenton, 15-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prodfdiv.1 | |
|
prodfdiv.2 | |
||
prodfdiv.3 | |
||
prodfdiv.4 | |
||
prodfdiv.5 | |
||
Assertion | prodfdiv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodfdiv.1 | |
|
2 | prodfdiv.2 | |
|
3 | prodfdiv.3 | |
|
4 | prodfdiv.4 | |
|
5 | prodfdiv.5 | |
|
6 | fveq2 | |
|
7 | 6 | oveq2d | |
8 | eqid | |
|
9 | ovex | |
|
10 | 7 8 9 | fvmpt | |
11 | 10 | adantl | |
12 | 1 3 4 11 | prodfrec | |
13 | 12 | oveq2d | |
14 | eleq1w | |
|
15 | 14 | anbi2d | |
16 | fveq2 | |
|
17 | 16 | eleq1d | |
18 | 15 17 | imbi12d | |
19 | 18 3 | chvarvv | |
20 | 16 | neeq1d | |
21 | 15 20 | imbi12d | |
22 | 21 4 | chvarvv | |
23 | 19 22 | reccld | |
24 | 23 | fmpttd | |
25 | 24 | ffvelcdmda | |
26 | 2 3 4 | divrecd | |
27 | 11 | oveq2d | |
28 | 26 5 27 | 3eqtr4d | |
29 | 1 2 25 28 | prodfmul | |
30 | mulcl | |
|
31 | 30 | adantl | |
32 | 1 2 31 | seqcl | |
33 | 1 3 31 | seqcl | |
34 | 1 3 4 | prodfn0 | |
35 | 32 33 34 | divrecd | |
36 | 13 29 35 | 3eqtr4d | |