| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prodfdiv.1 |
|
| 2 |
|
prodfdiv.2 |
|
| 3 |
|
prodfdiv.3 |
|
| 4 |
|
prodfdiv.4 |
|
| 5 |
|
prodfdiv.5 |
|
| 6 |
|
fveq2 |
|
| 7 |
6
|
oveq2d |
|
| 8 |
|
eqid |
|
| 9 |
|
ovex |
|
| 10 |
7 8 9
|
fvmpt |
|
| 11 |
10
|
adantl |
|
| 12 |
1 3 4 11
|
prodfrec |
|
| 13 |
12
|
oveq2d |
|
| 14 |
|
eleq1w |
|
| 15 |
14
|
anbi2d |
|
| 16 |
|
fveq2 |
|
| 17 |
16
|
eleq1d |
|
| 18 |
15 17
|
imbi12d |
|
| 19 |
18 3
|
chvarvv |
|
| 20 |
16
|
neeq1d |
|
| 21 |
15 20
|
imbi12d |
|
| 22 |
21 4
|
chvarvv |
|
| 23 |
19 22
|
reccld |
|
| 24 |
23
|
fmpttd |
|
| 25 |
24
|
ffvelcdmda |
|
| 26 |
2 3 4
|
divrecd |
|
| 27 |
11
|
oveq2d |
|
| 28 |
26 5 27
|
3eqtr4d |
|
| 29 |
1 2 25 28
|
prodfmul |
|
| 30 |
|
mulcl |
|
| 31 |
30
|
adantl |
|
| 32 |
1 2 31
|
seqcl |
|
| 33 |
1 3 31
|
seqcl |
|
| 34 |
1 3 4
|
prodfn0 |
|
| 35 |
32 33 34
|
divrecd |
|
| 36 |
13 29 35
|
3eqtr4d |
|