Metamath Proof Explorer


Theorem prpair

Description: Characterization of a proper pair: A class is a proper pair iff it consists of exactly two different sets. (Contributed by AV, 11-Mar-2023)

Ref Expression
Hypothesis prpair.p P = x 𝒫 V | x = 2
Assertion prpair X P a V b V X = a b a b

Proof

Step Hyp Ref Expression
1 prpair.p P = x 𝒫 V | x = 2
2 1 eleq2i X P X x 𝒫 V | x = 2
3 fveqeq2 x = X x = 2 X = 2
4 3 elrab X x 𝒫 V | x = 2 X 𝒫 V X = 2
5 hash2prb X 𝒫 V X = 2 a X b X a b X = a b
6 elpwi X 𝒫 V X V
7 ancom a b X = a b X = a b a b
8 7 2rexbii a X b X a b X = a b a X b X X = a b a b
9 8 biimpi a X b X a b X = a b a X b X X = a b a b
10 ss2rexv X V a X b X X = a b a b a V b V X = a b a b
11 6 9 10 syl2im X 𝒫 V a X b X a b X = a b a V b V X = a b a b
12 5 11 sylbid X 𝒫 V X = 2 a V b V X = a b a b
13 12 imp X 𝒫 V X = 2 a V b V X = a b a b
14 prelpwi a V b V a b 𝒫 V
15 14 adantr a V b V X = a b a b a b 𝒫 V
16 hashprg a V b V a b a b = 2
17 16 biimpd a V b V a b a b = 2
18 17 adantld a V b V X = a b a b a b = 2
19 18 imp a V b V X = a b a b a b = 2
20 eleq1 X = a b X 𝒫 V a b 𝒫 V
21 fveqeq2 X = a b X = 2 a b = 2
22 20 21 anbi12d X = a b X 𝒫 V X = 2 a b 𝒫 V a b = 2
23 22 adantr X = a b a b X 𝒫 V X = 2 a b 𝒫 V a b = 2
24 23 adantl a V b V X = a b a b X 𝒫 V X = 2 a b 𝒫 V a b = 2
25 15 19 24 mpbir2and a V b V X = a b a b X 𝒫 V X = 2
26 25 ex a V b V X = a b a b X 𝒫 V X = 2
27 26 rexlimivv a V b V X = a b a b X 𝒫 V X = 2
28 13 27 impbii X 𝒫 V X = 2 a V b V X = a b a b
29 2 4 28 3bitri X P a V b V X = a b a b