Metamath Proof Explorer


Theorem psr1cl

Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrring.s S=ImPwSerR
psrring.i φIV
psrring.r φRRing
psr1cl.d D=f0I|f-1Fin
psr1cl.z 0˙=0R
psr1cl.o 1˙=1R
psr1cl.u U=xDifx=I×01˙0˙
psr1cl.b B=BaseS
Assertion psr1cl φUB

Proof

Step Hyp Ref Expression
1 psrring.s S=ImPwSerR
2 psrring.i φIV
3 psrring.r φRRing
4 psr1cl.d D=f0I|f-1Fin
5 psr1cl.z 0˙=0R
6 psr1cl.o 1˙=1R
7 psr1cl.u U=xDifx=I×01˙0˙
8 psr1cl.b B=BaseS
9 eqid BaseR=BaseR
10 9 6 ringidcl RRing1˙BaseR
11 9 5 ring0cl RRing0˙BaseR
12 10 11 ifcld RRingifx=I×01˙0˙BaseR
13 3 12 syl φifx=I×01˙0˙BaseR
14 13 adantr φxDifx=I×01˙0˙BaseR
15 14 7 fmptd φU:DBaseR
16 fvex BaseRV
17 ovex 0IV
18 4 17 rabex2 DV
19 16 18 elmap UBaseRDU:DBaseR
20 15 19 sylibr φUBaseRD
21 1 9 4 8 2 psrbas φB=BaseRD
22 20 21 eleqtrrd φUB