Metamath Proof Explorer


Theorem psrbagconcl

Description: The complement of a bag is a bag. (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 6-Aug-2024)

Ref Expression
Hypotheses psrbag.d D=f0I|f-1Fin
psrbagconf1o.s S=yD|yfF
Assertion psrbagconcl FDXSFfXS

Proof

Step Hyp Ref Expression
1 psrbag.d D=f0I|f-1Fin
2 psrbagconf1o.s S=yD|yfF
3 simpl FDXSFD
4 simpr FDXSXS
5 breq1 y=XyfFXfF
6 5 2 elrab2 XSXDXfF
7 4 6 sylib FDXSXDXfF
8 7 simpld FDXSXD
9 1 psrbagf XDX:I0
10 8 9 syl FDXSX:I0
11 7 simprd FDXSXfF
12 1 psrbagcon FDX:I0XfFFfXDFfXfF
13 3 10 11 12 syl3anc FDXSFfXDFfXfF
14 breq1 y=FfXyfFFfXfF
15 14 2 elrab2 FfXSFfXDFfXfF
16 13 15 sylibr FDXSFfXS