Metamath Proof Explorer


Theorem psrbagev1

Description: A bag of multipliers provides the conditions for a valid sum. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 18-Jul-2019) (Revised by AV, 11-Apr-2024) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024)

Ref Expression
Hypotheses psrbagev1.d D=h0I|h-1Fin
psrbagev1.c C=BaseT
psrbagev1.x ·˙=T
psrbagev1.z 0˙=0T
psrbagev1.t φTCMnd
psrbagev1.b φBD
psrbagev1.g φG:IC
Assertion psrbagev1 φB·˙fG:ICfinSupp0˙B·˙fG

Proof

Step Hyp Ref Expression
1 psrbagev1.d D=h0I|h-1Fin
2 psrbagev1.c C=BaseT
3 psrbagev1.x ·˙=T
4 psrbagev1.z 0˙=0T
5 psrbagev1.t φTCMnd
6 psrbagev1.b φBD
7 psrbagev1.g φG:IC
8 5 cmnmndd φTMnd
9 2 3 mulgnn0cl TMndy0zCy·˙zC
10 9 3expb TMndy0zCy·˙zC
11 8 10 sylan φy0zCy·˙zC
12 1 psrbagf BDB:I0
13 6 12 syl φB:I0
14 13 ffnd φBFnI
15 6 14 fndmexd φIV
16 inidm II=I
17 11 13 7 15 15 16 off φB·˙fG:IC
18 ovexd φB·˙fGV
19 7 ffnd φGFnI
20 14 19 15 15 offun φFunB·˙fG
21 4 fvexi 0˙V
22 21 a1i φ0˙V
23 1 psrbagfsupp BDfinSupp0B
24 6 23 syl φfinSupp0B
25 24 fsuppimpd φBsupp0Fin
26 ssidd φBsupp0Bsupp0
27 2 4 3 mulg0 zC0·˙z=0˙
28 27 adantl φzC0·˙z=0˙
29 c0ex 0V
30 29 a1i φ0V
31 26 28 13 7 15 30 suppssof1 φB·˙fGsupp0˙Bsupp0
32 suppssfifsupp B·˙fGVFunB·˙fG0˙VBsupp0FinB·˙fGsupp0˙Bsupp0finSupp0˙B·˙fG
33 18 20 22 25 31 32 syl32anc φfinSupp0˙B·˙fG
34 17 33 jca φB·˙fG:ICfinSupp0˙B·˙fG