Metamath Proof Explorer


Theorem ptval2

Description: The value of the product topology function. (Contributed by Mario Carneiro, 7-Feb-2015)

Ref Expression
Hypotheses ptval2.1 J=𝑡F
ptval2.2 X=J
ptval2.3 G=kA,uFkwXwk-1u
Assertion ptval2 AVF:ATopJ=topGenfiXranG

Proof

Step Hyp Ref Expression
1 ptval2.1 J=𝑡F
2 ptval2.2 X=J
3 ptval2.3 G=kA,uFkwXwk-1u
4 ffn F:ATopFFnA
5 eqid x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy=x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
6 5 ptval AVFFnA𝑡F=topGenx|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
7 1 6 eqtrid AVFFnAJ=topGenx|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
8 4 7 sylan2 AVF:ATopJ=topGenx|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
9 eqid nAFn=nAFn
10 5 9 ptbasfi AVF:ATopx|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy=finAFnrankA,uFkwnAFnwk-1u
11 1 ptuni AVF:ATopnAFn=J
12 11 2 eqtr4di AVF:ATopnAFn=X
13 12 sneqd AVF:ATopnAFn=X
14 12 3ad2ant1 AVF:ATopkAuFknAFn=X
15 14 mpteq1d AVF:ATopkAuFkwnAFnwk=wXwk
16 15 cnveqd AVF:ATopkAuFkwnAFnwk-1=wXwk-1
17 16 imaeq1d AVF:ATopkAuFkwnAFnwk-1u=wXwk-1u
18 17 mpoeq3dva AVF:ATopkA,uFkwnAFnwk-1u=kA,uFkwXwk-1u
19 18 3 eqtr4di AVF:ATopkA,uFkwnAFnwk-1u=G
20 19 rneqd AVF:AToprankA,uFkwnAFnwk-1u=ranG
21 13 20 uneq12d AVF:ATopnAFnrankA,uFkwnAFnwk-1u=XranG
22 21 fveq2d AVF:ATopfinAFnrankA,uFkwnAFnwk-1u=fiXranG
23 10 22 eqtrd AVF:ATopx|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy=fiXranG
24 23 fveq2d AVF:AToptopGenx|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy=topGenfiXranG
25 8 24 eqtrd AVF:ATopJ=topGenfiXranG