Metamath Proof Explorer


Theorem pw2m1lepw2m1

Description: 2 to the power of a positive integer decreased by 1 is less than or equal to 2 to the power of the integer minus 1. (Contributed by AV, 30-May-2020)

Ref Expression
Assertion pw2m1lepw2m1 I2I12I1

Proof

Step Hyp Ref Expression
1 1lt2 1<2
2 nncn II
3 1cnd I1
4 2 3 nncand III1=1
5 4 oveq2d I2II1=21
6 2cn 2
7 6 a1i I2
8 2ne0 20
9 8 a1i I20
10 nnz II
11 peano2zm II1
12 10 11 syl II1
13 7 9 12 10 expsubd I2II1=2I2I1
14 exp1 221=2
15 6 14 mp1i I21=2
16 5 13 15 3eqtr3d I2I2I1=2
17 1 16 breqtrrid I1<2I2I1
18 2nn 2
19 18 a1i I2
20 nnm1nn0 II10
21 19 20 nnexpcld I2I1
22 21 nnrpd I2I1+
23 2z 2
24 nnnn0 II0
25 zexpcl 2I02I
26 23 24 25 sylancr I2I
27 26 zred I2I
28 divgt1b 2I1+2I2I1<2I1<2I2I1
29 22 27 28 syl2anc I2I1<2I1<2I2I1
30 17 29 mpbird I2I1<2I
31 21 nnzd I2I1
32 zltlem1 2I12I2I1<2I2I12I1
33 31 26 32 syl2anc I2I1<2I2I12I1
34 30 33 mpbid I2I12I1