Metamath Proof Explorer


Theorem pwdjundom

Description: The powerset of a Dedekind-infinite set does not inject into its cardinal sum with itself. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Assertion pwdjundom ωA¬𝒫AA⊔︀A

Proof

Step Hyp Ref Expression
1 pwxpndom2 ωA¬𝒫AA⊔︀A×A
2 df1o2 1𝑜=
3 2 xpeq1i 1𝑜×A=×A
4 0ex V
5 reldom Rel
6 5 brrelex2i ωAAV
7 xpsnen2g VAV×AA
8 4 6 7 sylancr ωA×AA
9 3 8 eqbrtrid ωA1𝑜×AA
10 9 ensymd ωAA1𝑜×A
11 omex ωV
12 ordom Ordω
13 1onn 1𝑜ω
14 ordelss Ordω1𝑜ω1𝑜ω
15 12 13 14 mp2an 1𝑜ω
16 ssdomg ωV1𝑜ω1𝑜ω
17 11 15 16 mp2 1𝑜ω
18 domtr 1𝑜ωωA1𝑜A
19 17 18 mpan ωA1𝑜A
20 xpdom1g AV1𝑜A1𝑜×AA×A
21 6 19 20 syl2anc ωA1𝑜×AA×A
22 endomtr A1𝑜×A1𝑜×AA×AAA×A
23 10 21 22 syl2anc ωAAA×A
24 djudom2 AA×AAVA⊔︀AA⊔︀A×A
25 23 6 24 syl2anc ωAA⊔︀AA⊔︀A×A
26 domtr 𝒫AA⊔︀AA⊔︀AA⊔︀A×A𝒫AA⊔︀A×A
27 26 expcom A⊔︀AA⊔︀A×A𝒫AA⊔︀A𝒫AA⊔︀A×A
28 25 27 syl ωA𝒫AA⊔︀A𝒫AA⊔︀A×A
29 1 28 mtod ωA¬𝒫AA⊔︀A