Metamath Proof Explorer


Theorem pwsgsum

Description: Finite commutative sums in a power structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by Mario Carneiro, 3-Jul-2015) (Revised by AV, 9-Jun-2019)

Ref Expression
Hypotheses pwsgsum.y Y=R𝑠I
pwsgsum.b B=BaseR
pwsgsum.z 0˙=0Y
pwsgsum.i φIV
pwsgsum.j φJW
pwsgsum.r φRCMnd
pwsgsum.f φxIyJUB
pwsgsum.w φfinSupp0˙yJxIU
Assertion pwsgsum φYyJxIU=xIRyJU

Proof

Step Hyp Ref Expression
1 pwsgsum.y Y=R𝑠I
2 pwsgsum.b B=BaseR
3 pwsgsum.z 0˙=0Y
4 pwsgsum.i φIV
5 pwsgsum.j φJW
6 pwsgsum.r φRCMnd
7 pwsgsum.f φxIyJUB
8 pwsgsum.w φfinSupp0˙yJxIU
9 eqid ScalarR=ScalarR
10 1 9 pwsval RCMndIVY=ScalarR𝑠I×R
11 6 4 10 syl2anc φY=ScalarR𝑠I×R
12 11 oveq1d φYyJxIU=ScalarR𝑠I×RyJxIU
13 fconstmpt I×R=xIR
14 13 oveq2i ScalarR𝑠I×R=ScalarR𝑠xIR
15 eqid 0ScalarR𝑠I×R=0ScalarR𝑠I×R
16 fvexd φScalarRV
17 6 adantr φxIRCMnd
18 11 fveq2d φ0Y=0ScalarR𝑠I×R
19 3 18 eqtrid φ0˙=0ScalarR𝑠I×R
20 8 19 breqtrd φfinSupp0ScalarR𝑠I×RyJxIU
21 14 2 15 4 5 16 17 7 20 prdsgsum φScalarR𝑠I×RyJxIU=xIRyJU
22 12 21 eqtrd φYyJxIU=xIRyJU