Metamath Proof Explorer


Theorem qrngdiv

Description: The division operation in the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypothesis qrng.q โŠขQ=โ„‚fldโ†พ๐‘ โ„š
Assertion qrngdiv โŠขXโˆˆโ„šโˆงYโˆˆโ„šโˆงYโ‰ 0โ†’X/rโกQY=XY

Proof

Step Hyp Ref Expression
1 qrng.q โŠขQ=โ„‚fldโ†พ๐‘ โ„š
2 qsubdrg โŠขโ„šโˆˆSubRingโกโ„‚fldโˆงโ„‚fldโ†พ๐‘ โ„šโˆˆDivRing
3 2 simpli โŠขโ„šโˆˆSubRingโกโ„‚fld
4 simp1 โŠขXโˆˆโ„šโˆงYโˆˆโ„šโˆงYโ‰ 0โ†’Xโˆˆโ„š
5 3simpc โŠขXโˆˆโ„šโˆงYโˆˆโ„šโˆงYโ‰ 0โ†’Yโˆˆโ„šโˆงYโ‰ 0
6 eldifsn โŠขYโˆˆโ„šโˆ–0โ†”Yโˆˆโ„šโˆงYโ‰ 0
7 5 6 sylibr โŠขXโˆˆโ„šโˆงYโˆˆโ„šโˆงYโ‰ 0โ†’Yโˆˆโ„šโˆ–0
8 cnflddiv โŠขรท=/rโกโ„‚fld
9 1 qrngbas โŠขโ„š=BaseQ
10 1 qrng0 โŠข0=0Q
11 1 qdrng โŠขQโˆˆDivRing
12 9 10 11 drngui โŠขโ„šโˆ–0=UnitโกQ
13 eqid โŠข/rโกQ=/rโกQ
14 1 8 12 13 subrgdv โŠขโ„šโˆˆSubRingโกโ„‚fldโˆงXโˆˆโ„šโˆงYโˆˆโ„šโˆ–0โ†’XY=X/rโกQY
15 3 4 7 14 mp3an2i โŠขXโˆˆโ„šโˆงYโˆˆโ„šโˆงYโ‰ 0โ†’XY=X/rโกQY
16 15 eqcomd โŠขXโˆˆโ„šโˆงYโˆˆโ„šโˆงYโ‰ 0โ†’X/rโกQY=XY