Description: If a quotient map is injective, then it is a homeomorphism. (Contributed by Mario Carneiro, 25-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qtopf1.1 | |
|
qtopf1.2 | |
||
Assertion | qtopf1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qtopf1.1 | |
|
2 | qtopf1.2 | |
|
3 | f1fn | |
|
4 | 2 3 | syl | |
5 | qtopid | |
|
6 | 1 4 5 | syl2anc | |
7 | f1f1orn | |
|
8 | f1ocnv | |
|
9 | f1of | |
|
10 | 2 7 8 9 | 4syl | |
11 | imacnvcnv | |
|
12 | imassrn | |
|
13 | 12 | a1i | |
14 | 2 | adantr | |
15 | toponss | |
|
16 | 1 15 | sylan | |
17 | f1imacnv | |
|
18 | 14 16 17 | syl2anc | |
19 | simpr | |
|
20 | 18 19 | eqeltrd | |
21 | dffn4 | |
|
22 | 4 21 | sylib | |
23 | elqtop3 | |
|
24 | 1 22 23 | syl2anc | |
25 | 24 | adantr | |
26 | 13 20 25 | mpbir2and | |
27 | 11 26 | eqeltrid | |
28 | 27 | ralrimiva | |
29 | qtoptopon | |
|
30 | 1 22 29 | syl2anc | |
31 | iscn | |
|
32 | 30 1 31 | syl2anc | |
33 | 10 28 32 | mpbir2and | |
34 | ishmeo | |
|
35 | 6 33 34 | sylanbrc | |