Metamath Proof Explorer


Theorem qtopf1

Description: If a quotient map is injective, then it is a homeomorphism. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypotheses qtopf1.1 φJTopOnX
qtopf1.2 φF:X1-1Y
Assertion qtopf1 φFJHomeoJqTopF

Proof

Step Hyp Ref Expression
1 qtopf1.1 φJTopOnX
2 qtopf1.2 φF:X1-1Y
3 f1fn F:X1-1YFFnX
4 2 3 syl φFFnX
5 qtopid JTopOnXFFnXFJCnJqTopF
6 1 4 5 syl2anc φFJCnJqTopF
7 f1f1orn F:X1-1YF:X1-1 ontoranF
8 f1ocnv F:X1-1 ontoranFF-1:ranF1-1 ontoX
9 f1of F-1:ranF1-1 ontoXF-1:ranFX
10 2 7 8 9 4syl φF-1:ranFX
11 imacnvcnv F-1-1x=Fx
12 imassrn FxranF
13 12 a1i φxJFxranF
14 2 adantr φxJF:X1-1Y
15 toponss JTopOnXxJxX
16 1 15 sylan φxJxX
17 f1imacnv F:X1-1YxXF-1Fx=x
18 14 16 17 syl2anc φxJF-1Fx=x
19 simpr φxJxJ
20 18 19 eqeltrd φxJF-1FxJ
21 dffn4 FFnXF:XontoranF
22 4 21 sylib φF:XontoranF
23 elqtop3 JTopOnXF:XontoranFFxJqTopFFxranFF-1FxJ
24 1 22 23 syl2anc φFxJqTopFFxranFF-1FxJ
25 24 adantr φxJFxJqTopFFxranFF-1FxJ
26 13 20 25 mpbir2and φxJFxJqTopF
27 11 26 eqeltrid φxJF-1-1xJqTopF
28 27 ralrimiva φxJF-1-1xJqTopF
29 qtoptopon JTopOnXF:XontoranFJqTopFTopOnranF
30 1 22 29 syl2anc φJqTopFTopOnranF
31 iscn JqTopFTopOnranFJTopOnXF-1JqTopFCnJF-1:ranFXxJF-1-1xJqTopF
32 30 1 31 syl2anc φF-1JqTopFCnJF-1:ranFXxJF-1-1xJqTopF
33 10 28 32 mpbir2and φF-1JqTopFCnJ
34 ishmeo FJHomeoJqTopFFJCnJqTopFF-1JqTopFCnJ
35 6 33 34 sylanbrc φFJHomeoJqTopF