Description: A surjective continuous function from J to K induces a topology J qTop F on the base set of K . This topology is in general finer than K . Together with qtopid , this implies that J qTop F is the finest topology making F continuous, i.e. the final topology with respect to the family { F } . (Contributed by Mario Carneiro, 24-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | qtopss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponss | |
|
2 | 1 | 3ad2antl2 | |
3 | cnima | |
|
4 | 3 | 3ad2antl1 | |
5 | simpl1 | |
|
6 | cntop1 | |
|
7 | 5 6 | syl | |
8 | toptopon2 | |
|
9 | 7 8 | sylib | |
10 | simpl2 | |
|
11 | cnf2 | |
|
12 | 9 10 5 11 | syl3anc | |
13 | 12 | ffnd | |
14 | simpl3 | |
|
15 | df-fo | |
|
16 | 13 14 15 | sylanbrc | |
17 | elqtop3 | |
|
18 | 9 16 17 | syl2anc | |
19 | 2 4 18 | mpbir2and | |
20 | 19 | ex | |
21 | 20 | ssrdv | |