Metamath Proof Explorer


Theorem qtopss

Description: A surjective continuous function from J to K induces a topology J qTop F on the base set of K . This topology is in general finer than K . Together with qtopid , this implies that J qTop F is the finest topology making F continuous, i.e. the final topology with respect to the family { F } . (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Assertion qtopss F J Cn K K TopOn Y ran F = Y K J qTop F

Proof

Step Hyp Ref Expression
1 toponss K TopOn Y x K x Y
2 1 3ad2antl2 F J Cn K K TopOn Y ran F = Y x K x Y
3 cnima F J Cn K x K F -1 x J
4 3 3ad2antl1 F J Cn K K TopOn Y ran F = Y x K F -1 x J
5 simpl1 F J Cn K K TopOn Y ran F = Y x K F J Cn K
6 cntop1 F J Cn K J Top
7 5 6 syl F J Cn K K TopOn Y ran F = Y x K J Top
8 toptopon2 J Top J TopOn J
9 7 8 sylib F J Cn K K TopOn Y ran F = Y x K J TopOn J
10 simpl2 F J Cn K K TopOn Y ran F = Y x K K TopOn Y
11 cnf2 J TopOn J K TopOn Y F J Cn K F : J Y
12 9 10 5 11 syl3anc F J Cn K K TopOn Y ran F = Y x K F : J Y
13 12 ffnd F J Cn K K TopOn Y ran F = Y x K F Fn J
14 simpl3 F J Cn K K TopOn Y ran F = Y x K ran F = Y
15 df-fo F : J onto Y F Fn J ran F = Y
16 13 14 15 sylanbrc F J Cn K K TopOn Y ran F = Y x K F : J onto Y
17 elqtop3 J TopOn J F : J onto Y x J qTop F x Y F -1 x J
18 9 16 17 syl2anc F J Cn K K TopOn Y ran F = Y x K x J qTop F x Y F -1 x J
19 2 4 18 mpbir2and F J Cn K K TopOn Y ran F = Y x K x J qTop F
20 19 ex F J Cn K K TopOn Y ran F = Y x K x J qTop F
21 20 ssrdv F J Cn K K TopOn Y ran F = Y K J qTop F