Description: The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | quscrng.u | |
|
quscrng.i | |
||
Assertion | quscrng | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quscrng.u | |
|
2 | quscrng.i | |
|
3 | crngring | |
|
4 | 3 | adantr | |
5 | simpr | |
|
6 | 2 | crng2idl | |
7 | 6 | adantr | |
8 | 5 7 | eleqtrd | |
9 | eqid | |
|
10 | 1 9 | qusring | |
11 | 4 8 10 | syl2anc | |
12 | 1 | a1i | |
13 | eqidd | |
|
14 | ovexd | |
|
15 | 12 13 14 4 | qusbas | |
16 | 15 | eleq2d | |
17 | 15 | eleq2d | |
18 | 16 17 | anbi12d | |
19 | eqid | |
|
20 | oveq2 | |
|
21 | oveq1 | |
|
22 | 20 21 | eqeq12d | |
23 | oveq1 | |
|
24 | oveq2 | |
|
25 | 23 24 | eqeq12d | |
26 | eqid | |
|
27 | eqid | |
|
28 | 26 27 | crngcom | |
29 | 28 | ad4ant134 | |
30 | 29 | eceq1d | |
31 | 2 | lidlsubg | |
32 | 3 31 | sylan | |
33 | eqid | |
|
34 | 26 33 | eqger | |
35 | 32 34 | syl | |
36 | 26 33 9 27 | 2idlcpbl | |
37 | 4 8 36 | syl2anc | |
38 | 26 27 | ringcl | |
39 | 38 | 3expb | |
40 | 4 39 | sylan | |
41 | eqid | |
|
42 | 12 13 35 4 37 40 27 41 | qusmulval | |
43 | 42 | 3expa | |
44 | 12 13 35 4 37 40 27 41 | qusmulval | |
45 | 44 | 3expa | |
46 | 45 | an32s | |
47 | 30 43 46 | 3eqtr4rd | |
48 | 19 25 47 | ectocld | |
49 | 48 | an32s | |
50 | 19 22 49 | ectocld | |
51 | 50 | expl | |
52 | 18 51 | sylbird | |
53 | 52 | ralrimivv | |
54 | eqid | |
|
55 | 54 41 | iscrng2 | |
56 | 11 53 55 | sylanbrc | |