| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quscrng.u |
|
| 2 |
|
quscrng.i |
|
| 3 |
|
crngring |
|
| 4 |
|
simpr |
|
| 5 |
2
|
crng2idl |
|
| 6 |
5
|
adantr |
|
| 7 |
4 6
|
eleqtrd |
|
| 8 |
|
eqid |
|
| 9 |
1 8
|
qusring |
|
| 10 |
3 7 9
|
syl2an2r |
|
| 11 |
1
|
a1i |
|
| 12 |
|
eqidd |
|
| 13 |
|
ovexd |
|
| 14 |
3
|
adantr |
|
| 15 |
11 12 13 14
|
qusbas |
|
| 16 |
15
|
eleq2d |
|
| 17 |
15
|
eleq2d |
|
| 18 |
16 17
|
anbi12d |
|
| 19 |
|
eqid |
|
| 20 |
|
oveq2 |
|
| 21 |
|
oveq1 |
|
| 22 |
20 21
|
eqeq12d |
|
| 23 |
|
oveq1 |
|
| 24 |
|
oveq2 |
|
| 25 |
23 24
|
eqeq12d |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
26 27
|
crngcom |
|
| 29 |
28
|
ad4ant134 |
|
| 30 |
29
|
eceq1d |
|
| 31 |
|
ringrng |
|
| 32 |
3 31
|
syl |
|
| 33 |
32
|
adantr |
|
| 34 |
2
|
lidlsubg |
|
| 35 |
3 34
|
sylan |
|
| 36 |
33 7 35
|
3jca |
|
| 37 |
36
|
adantr |
|
| 38 |
|
simpr |
|
| 39 |
38
|
anim1i |
|
| 40 |
|
eqid |
|
| 41 |
|
eqid |
|
| 42 |
40 1 26 27 41
|
qusmulrng |
|
| 43 |
37 39 42
|
syl2an2r |
|
| 44 |
39
|
ancomd |
|
| 45 |
40 1 26 27 41
|
qusmulrng |
|
| 46 |
37 44 45
|
syl2an2r |
|
| 47 |
30 43 46
|
3eqtr4rd |
|
| 48 |
19 25 47
|
ectocld |
|
| 49 |
48
|
an32s |
|
| 50 |
19 22 49
|
ectocld |
|
| 51 |
50
|
expl |
|
| 52 |
18 51
|
sylbird |
|
| 53 |
52
|
ralrimivv |
|
| 54 |
|
eqid |
|
| 55 |
54 41
|
iscrng2 |
|
| 56 |
10 53 55
|
sylanbrc |
|