Metamath Proof Explorer


Theorem quscrng

Description: The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses quscrng.u U=R/𝑠R~QGS
quscrng.i I=LIdealR
Assertion quscrng RCRingSIUCRing

Proof

Step Hyp Ref Expression
1 quscrng.u U=R/𝑠R~QGS
2 quscrng.i I=LIdealR
3 crngring RCRingRRing
4 3 adantr RCRingSIRRing
5 simpr RCRingSISI
6 2 crng2idl RCRingI=2IdealR
7 6 adantr RCRingSII=2IdealR
8 5 7 eleqtrd RCRingSIS2IdealR
9 eqid 2IdealR=2IdealR
10 1 9 qusring RRingS2IdealRURing
11 4 8 10 syl2anc RCRingSIURing
12 1 a1i RCRingSIU=R/𝑠R~QGS
13 eqidd RCRingSIBaseR=BaseR
14 ovexd RCRingSIR~QGSV
15 12 13 14 4 qusbas RCRingSIBaseR/R~QGS=BaseU
16 15 eleq2d RCRingSIxBaseR/R~QGSxBaseU
17 15 eleq2d RCRingSIyBaseR/R~QGSyBaseU
18 16 17 anbi12d RCRingSIxBaseR/R~QGSyBaseR/R~QGSxBaseUyBaseU
19 eqid BaseR/R~QGS=BaseR/R~QGS
20 oveq2 uR~QGS=yxUuR~QGS=xUy
21 oveq1 uR~QGS=yuR~QGSUx=yUx
22 20 21 eqeq12d uR~QGS=yxUuR~QGS=uR~QGSUxxUy=yUx
23 oveq1 vR~QGS=xvR~QGSUuR~QGS=xUuR~QGS
24 oveq2 vR~QGS=xuR~QGSUvR~QGS=uR~QGSUx
25 23 24 eqeq12d vR~QGS=xvR~QGSUuR~QGS=uR~QGSUvR~QGSxUuR~QGS=uR~QGSUx
26 eqid BaseR=BaseR
27 eqid R=R
28 26 27 crngcom RCRinguBaseRvBaseRuRv=vRu
29 28 ad4ant134 RCRingSIuBaseRvBaseRuRv=vRu
30 29 eceq1d RCRingSIuBaseRvBaseRuRvR~QGS=vRuR~QGS
31 2 lidlsubg RRingSISSubGrpR
32 3 31 sylan RCRingSISSubGrpR
33 eqid R~QGS=R~QGS
34 26 33 eqger SSubGrpRR~QGSErBaseR
35 32 34 syl RCRingSIR~QGSErBaseR
36 26 33 9 27 2idlcpbl RRingS2IdealRaR~QGScbR~QGSdaRbR~QGScRd
37 4 8 36 syl2anc RCRingSIaR~QGScbR~QGSdaRbR~QGScRd
38 26 27 ringcl RRingcBaseRdBaseRcRdBaseR
39 38 3expb RRingcBaseRdBaseRcRdBaseR
40 4 39 sylan RCRingSIcBaseRdBaseRcRdBaseR
41 eqid U=U
42 12 13 35 4 37 40 27 41 qusmulval RCRingSIuBaseRvBaseRuR~QGSUvR~QGS=uRvR~QGS
43 42 3expa RCRingSIuBaseRvBaseRuR~QGSUvR~QGS=uRvR~QGS
44 12 13 35 4 37 40 27 41 qusmulval RCRingSIvBaseRuBaseRvR~QGSUuR~QGS=vRuR~QGS
45 44 3expa RCRingSIvBaseRuBaseRvR~QGSUuR~QGS=vRuR~QGS
46 45 an32s RCRingSIuBaseRvBaseRvR~QGSUuR~QGS=vRuR~QGS
47 30 43 46 3eqtr4rd RCRingSIuBaseRvBaseRvR~QGSUuR~QGS=uR~QGSUvR~QGS
48 19 25 47 ectocld RCRingSIuBaseRxBaseR/R~QGSxUuR~QGS=uR~QGSUx
49 48 an32s RCRingSIxBaseR/R~QGSuBaseRxUuR~QGS=uR~QGSUx
50 19 22 49 ectocld RCRingSIxBaseR/R~QGSyBaseR/R~QGSxUy=yUx
51 50 expl RCRingSIxBaseR/R~QGSyBaseR/R~QGSxUy=yUx
52 18 51 sylbird RCRingSIxBaseUyBaseUxUy=yUx
53 52 ralrimivv RCRingSIxBaseUyBaseUxUy=yUx
54 eqid BaseU=BaseU
55 54 41 iscrng2 UCRingURingxBaseUyBaseUxUy=yUx
56 11 53 55 sylanbrc RCRingSIUCRing