Metamath Proof Explorer


Theorem qussub

Description: Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses qusgrp.h H=G/𝑠G~QGS
qusinv.v V=BaseG
qussub.p -˙=-G
qussub.a N=-H
Assertion qussub SNrmSGrpGXVYVXG~QGSNYG~QGS=X-˙YG~QGS

Proof

Step Hyp Ref Expression
1 qusgrp.h H=G/𝑠G~QGS
2 qusinv.v V=BaseG
3 qussub.p -˙=-G
4 qussub.a N=-H
5 eqid BaseH=BaseH
6 1 2 5 quseccl SNrmSGrpGXVXG~QGSBaseH
7 6 3adant3 SNrmSGrpGXVYVXG~QGSBaseH
8 1 2 5 quseccl SNrmSGrpGYVYG~QGSBaseH
9 eqid +H=+H
10 eqid invgH=invgH
11 5 9 10 4 grpsubval XG~QGSBaseHYG~QGSBaseHXG~QGSNYG~QGS=XG~QGS+HinvgHYG~QGS
12 7 8 11 3imp3i2an SNrmSGrpGXVYVXG~QGSNYG~QGS=XG~QGS+HinvgHYG~QGS
13 eqid invgG=invgG
14 1 2 13 10 qusinv SNrmSGrpGYVinvgHYG~QGS=invgGYG~QGS
15 14 3adant2 SNrmSGrpGXVYVinvgHYG~QGS=invgGYG~QGS
16 15 oveq2d SNrmSGrpGXVYVXG~QGS+HinvgHYG~QGS=XG~QGS+HinvgGYG~QGS
17 nsgsubg SNrmSGrpGSSubGrpG
18 subgrcl SSubGrpGGGrp
19 17 18 syl SNrmSGrpGGGrp
20 2 13 grpinvcl GGrpYVinvgGYV
21 19 20 sylan SNrmSGrpGYVinvgGYV
22 21 3adant2 SNrmSGrpGXVYVinvgGYV
23 eqid +G=+G
24 1 2 23 9 qusadd SNrmSGrpGXVinvgGYVXG~QGS+HinvgGYG~QGS=X+GinvgGYG~QGS
25 22 24 syld3an3 SNrmSGrpGXVYVXG~QGS+HinvgGYG~QGS=X+GinvgGYG~QGS
26 2 23 13 3 grpsubval XVYVX-˙Y=X+GinvgGY
27 26 3adant1 SNrmSGrpGXVYVX-˙Y=X+GinvgGY
28 27 eceq1d SNrmSGrpGXVYVX-˙YG~QGS=X+GinvgGYG~QGS
29 25 28 eqtr4d SNrmSGrpGXVYVXG~QGS+HinvgGYG~QGS=X-˙YG~QGS
30 12 16 29 3eqtrd SNrmSGrpGXVYVXG~QGSNYG~QGS=X-˙YG~QGS