Description: A stronger property of R1 than rankpw . The latter merely proves that R1 of the successor is a power set, but here we prove that if A is in the cumulative hierarchy, then ~P A is in the cumulative hierarchy of the successor. (Contributed by Raph Levien, 29-May-2004) (Revised by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | r1pw | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankpwi | |
|
2 | 1 | eleq1d | |
3 | eloni | |
|
4 | ordsucelsuc | |
|
5 | 3 4 | syl | |
6 | 5 | bicomd | |
7 | 2 6 | sylan9bb | |
8 | pwwf | |
|
9 | 8 | biimpi | |
10 | onsuc | |
|
11 | r1fnon | |
|
12 | 11 | fndmi | |
13 | 10 12 | eleqtrrdi | |
14 | rankr1ag | |
|
15 | 9 13 14 | syl2an | |
16 | 12 | eleq2i | |
17 | rankr1ag | |
|
18 | 16 17 | sylan2br | |
19 | 7 15 18 | 3bitr4rd | |
20 | 19 | ex | |
21 | r1elwf | |
|
22 | r1elwf | |
|
23 | r1elssi | |
|
24 | 22 23 | syl | |
25 | ssid | |
|
26 | pwexr | |
|
27 | elpwg | |
|
28 | 26 27 | syl | |
29 | 25 28 | mpbiri | |
30 | 24 29 | sseldd | |
31 | 21 30 | pm5.21ni | |
32 | 31 | a1d | |
33 | 20 32 | pm2.61i | |