Metamath Proof Explorer


Theorem r1pw

Description: A stronger property of R1 than rankpw . The latter merely proves that R1 of the successor is a power set, but here we prove that if A is in the cumulative hierarchy, then ~P A is in the cumulative hierarchy of the successor. (Contributed by Raph Levien, 29-May-2004) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion r1pw B On A R1 B 𝒫 A R1 suc B

Proof

Step Hyp Ref Expression
1 rankpwi A R1 On rank 𝒫 A = suc rank A
2 1 eleq1d A R1 On rank 𝒫 A suc B suc rank A suc B
3 eloni B On Ord B
4 ordsucelsuc Ord B rank A B suc rank A suc B
5 3 4 syl B On rank A B suc rank A suc B
6 5 bicomd B On suc rank A suc B rank A B
7 2 6 sylan9bb A R1 On B On rank 𝒫 A suc B rank A B
8 pwwf A R1 On 𝒫 A R1 On
9 8 biimpi A R1 On 𝒫 A R1 On
10 suceloni B On suc B On
11 r1fnon R1 Fn On
12 11 fndmi dom R1 = On
13 10 12 eleqtrrdi B On suc B dom R1
14 rankr1ag 𝒫 A R1 On suc B dom R1 𝒫 A R1 suc B rank 𝒫 A suc B
15 9 13 14 syl2an A R1 On B On 𝒫 A R1 suc B rank 𝒫 A suc B
16 12 eleq2i B dom R1 B On
17 rankr1ag A R1 On B dom R1 A R1 B rank A B
18 16 17 sylan2br A R1 On B On A R1 B rank A B
19 7 15 18 3bitr4rd A R1 On B On A R1 B 𝒫 A R1 suc B
20 19 ex A R1 On B On A R1 B 𝒫 A R1 suc B
21 r1elwf A R1 B A R1 On
22 r1elwf 𝒫 A R1 suc B 𝒫 A R1 On
23 r1elssi 𝒫 A R1 On 𝒫 A R1 On
24 22 23 syl 𝒫 A R1 suc B 𝒫 A R1 On
25 ssid A A
26 pwexr 𝒫 A R1 suc B A V
27 elpwg A V A 𝒫 A A A
28 26 27 syl 𝒫 A R1 suc B A 𝒫 A A A
29 25 28 mpbiri 𝒫 A R1 suc B A 𝒫 A
30 24 29 sseldd 𝒫 A R1 suc B A R1 On
31 21 30 pm5.21ni ¬ A R1 On A R1 B 𝒫 A R1 suc B
32 31 a1d ¬ A R1 On B On A R1 B 𝒫 A R1 suc B
33 20 32 pm2.61i B On A R1 B 𝒫 A R1 suc B