Metamath Proof Explorer


Theorem r1pw

Description: A stronger property of R1 than rankpw . The latter merely proves that R1 of the successor is a power set, but here we prove that if A is in the cumulative hierarchy, then ~P A is in the cumulative hierarchy of the successor. (Contributed by Raph Levien, 29-May-2004) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion r1pw BOnAR1B𝒫AR1sucB

Proof

Step Hyp Ref Expression
1 rankpwi AR1Onrank𝒫A=sucrankA
2 1 eleq1d AR1Onrank𝒫AsucBsucrankAsucB
3 eloni BOnOrdB
4 ordsucelsuc OrdBrankABsucrankAsucB
5 3 4 syl BOnrankABsucrankAsucB
6 5 bicomd BOnsucrankAsucBrankAB
7 2 6 sylan9bb AR1OnBOnrank𝒫AsucBrankAB
8 pwwf AR1On𝒫AR1On
9 8 biimpi AR1On𝒫AR1On
10 onsuc BOnsucBOn
11 r1fnon R1FnOn
12 11 fndmi domR1=On
13 10 12 eleqtrrdi BOnsucBdomR1
14 rankr1ag 𝒫AR1OnsucBdomR1𝒫AR1sucBrank𝒫AsucB
15 9 13 14 syl2an AR1OnBOn𝒫AR1sucBrank𝒫AsucB
16 12 eleq2i BdomR1BOn
17 rankr1ag AR1OnBdomR1AR1BrankAB
18 16 17 sylan2br AR1OnBOnAR1BrankAB
19 7 15 18 3bitr4rd AR1OnBOnAR1B𝒫AR1sucB
20 19 ex AR1OnBOnAR1B𝒫AR1sucB
21 r1elwf AR1BAR1On
22 r1elwf 𝒫AR1sucB𝒫AR1On
23 r1elssi 𝒫AR1On𝒫AR1On
24 22 23 syl 𝒫AR1sucB𝒫AR1On
25 ssid AA
26 pwexr 𝒫AR1sucBAV
27 elpwg AVA𝒫AAA
28 26 27 syl 𝒫AR1sucBA𝒫AAA
29 25 28 mpbiri 𝒫AR1sucBA𝒫A
30 24 29 sseldd 𝒫AR1sucBAR1On
31 21 30 pm5.21ni ¬AR1OnAR1B𝒫AR1sucB
32 31 a1d ¬AR1OnBOnAR1B𝒫AR1sucB
33 20 32 pm2.61i BOnAR1B𝒫AR1sucB