Metamath Proof Explorer


Theorem r1pwcl

Description: The cumulative hierarchy of a limit ordinal is closed under power set. (Contributed by Raph Levien, 29-May-2004) (Proof shortened by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion r1pwcl Lim B A R1 B 𝒫 A R1 B

Proof

Step Hyp Ref Expression
1 r1elwf A R1 B A R1 On
2 elfvdm A R1 B B dom R1
3 1 2 jca A R1 B A R1 On B dom R1
4 3 a1i Lim B A R1 B A R1 On B dom R1
5 r1elwf 𝒫 A R1 B 𝒫 A R1 On
6 pwwf A R1 On 𝒫 A R1 On
7 5 6 sylibr 𝒫 A R1 B A R1 On
8 elfvdm 𝒫 A R1 B B dom R1
9 7 8 jca 𝒫 A R1 B A R1 On B dom R1
10 9 a1i Lim B 𝒫 A R1 B A R1 On B dom R1
11 limsuc Lim B rank A B suc rank A B
12 11 adantr Lim B A R1 On B dom R1 rank A B suc rank A B
13 rankpwi A R1 On rank 𝒫 A = suc rank A
14 13 ad2antrl Lim B A R1 On B dom R1 rank 𝒫 A = suc rank A
15 14 eleq1d Lim B A R1 On B dom R1 rank 𝒫 A B suc rank A B
16 12 15 bitr4d Lim B A R1 On B dom R1 rank A B rank 𝒫 A B
17 rankr1ag A R1 On B dom R1 A R1 B rank A B
18 17 adantl Lim B A R1 On B dom R1 A R1 B rank A B
19 rankr1ag 𝒫 A R1 On B dom R1 𝒫 A R1 B rank 𝒫 A B
20 6 19 sylanb A R1 On B dom R1 𝒫 A R1 B rank 𝒫 A B
21 20 adantl Lim B A R1 On B dom R1 𝒫 A R1 B rank 𝒫 A B
22 16 18 21 3bitr4d Lim B A R1 On B dom R1 A R1 B 𝒫 A R1 B
23 22 ex Lim B A R1 On B dom R1 A R1 B 𝒫 A R1 B
24 4 10 23 pm5.21ndd Lim B A R1 B 𝒫 A R1 B