| Step | Hyp | Ref | Expression | 
						
							| 1 |  | israg.p |  | 
						
							| 2 |  | israg.d |  | 
						
							| 3 |  | israg.i |  | 
						
							| 4 |  | israg.l |  | 
						
							| 5 |  | israg.s |  | 
						
							| 6 |  | israg.g |  | 
						
							| 7 |  | israg.a |  | 
						
							| 8 |  | israg.b |  | 
						
							| 9 |  | israg.c |  | 
						
							| 10 |  | ragcgr.c |  | 
						
							| 11 |  | ragcgr.d |  | 
						
							| 12 |  | ragcgr.e |  | 
						
							| 13 |  | ragcgr.f |  | 
						
							| 14 |  | ragcgr.1 |  | 
						
							| 15 |  | ragcgr.2 |  | 
						
							| 16 |  | eqidd |  | 
						
							| 17 | 6 | adantr |  | 
						
							| 18 | 8 | adantr |  | 
						
							| 19 | 9 | adantr |  | 
						
							| 20 | 12 | adantr |  | 
						
							| 21 | 13 | adantr |  | 
						
							| 22 | 7 | adantr |  | 
						
							| 23 | 11 | adantr |  | 
						
							| 24 | 15 | adantr |  | 
						
							| 25 | 1 2 3 10 17 22 18 19 23 20 21 24 | cgr3simp2 |  | 
						
							| 26 |  | simpr |  | 
						
							| 27 | 1 2 3 17 18 19 20 21 25 26 | tgcgreq |  | 
						
							| 28 |  | eqidd |  | 
						
							| 29 | 16 27 28 | s3eqd |  | 
						
							| 30 | 1 2 3 4 5 17 23 21 20 | ragtrivb |  | 
						
							| 31 | 29 30 | eqeltrd |  | 
						
							| 32 | 14 | adantr |  | 
						
							| 33 | 6 | adantr |  | 
						
							| 34 | 7 | adantr |  | 
						
							| 35 | 8 | adantr |  | 
						
							| 36 | 9 | adantr |  | 
						
							| 37 | 1 2 3 4 5 33 34 35 36 | israg |  | 
						
							| 38 | 32 37 | mpbid |  | 
						
							| 39 | 13 | adantr |  | 
						
							| 40 | 11 | adantr |  | 
						
							| 41 | 12 | adantr |  | 
						
							| 42 | 15 | adantr |  | 
						
							| 43 | 1 2 3 10 33 34 35 36 40 41 39 42 | cgr3simp3 |  | 
						
							| 44 | 1 2 3 33 36 34 39 40 43 | tgcgrcomlr |  | 
						
							| 45 |  | eqid |  | 
						
							| 46 | 1 2 3 4 5 33 35 45 36 | mircl |  | 
						
							| 47 |  | eqid |  | 
						
							| 48 | 1 2 3 4 5 33 41 47 39 | mircl |  | 
						
							| 49 |  | simpr |  | 
						
							| 50 | 49 | necomd |  | 
						
							| 51 | 1 2 3 4 5 33 35 45 36 | mirbtwn |  | 
						
							| 52 | 1 2 3 33 46 35 36 51 | tgbtwncom |  | 
						
							| 53 | 1 2 3 4 5 33 41 47 39 | mirbtwn |  | 
						
							| 54 | 1 2 3 33 48 41 39 53 | tgbtwncom |  | 
						
							| 55 | 1 2 3 10 33 34 35 36 40 41 39 42 | cgr3simp2 |  | 
						
							| 56 | 1 2 3 33 35 36 41 39 55 | tgcgrcomlr |  | 
						
							| 57 | 1 2 3 4 5 33 35 45 36 | mircgr |  | 
						
							| 58 | 1 2 3 4 5 33 41 47 39 | mircgr |  | 
						
							| 59 | 55 57 58 | 3eqtr4d |  | 
						
							| 60 | 1 2 3 10 33 34 35 36 40 41 39 42 | cgr3simp1 |  | 
						
							| 61 | 1 2 3 33 34 35 40 41 60 | tgcgrcomlr |  | 
						
							| 62 | 1 2 3 33 36 35 46 39 41 48 34 40 50 52 54 56 59 43 61 | axtg5seg |  | 
						
							| 63 | 1 2 3 33 46 34 48 40 62 | tgcgrcomlr |  | 
						
							| 64 | 38 44 63 | 3eqtr3d |  | 
						
							| 65 | 1 2 3 4 5 33 40 41 39 | israg |  | 
						
							| 66 | 64 65 | mpbird |  | 
						
							| 67 | 31 66 | pm2.61dane |  |