Metamath Proof Explorer


Theorem ralssiun

Description: The index set of an indexed union is a subset of the union when each B contains its index. (Contributed by ML, 16-Dec-2020)

Ref Expression
Assertion ralssiun xAxBAxAB

Proof

Step Hyp Ref Expression
1 nfra1 xxAxB
2 nfcv _xA
3 nfiu1 _xxAB
4 simpr x=yxAxBxAxA
5 rsp xAxBxAxB
6 5 adantl x=yxAxBxAxB
7 eleq1 x=yxByB
8 7 imbi2d x=yxAxBxAyB
9 8 adantr x=yxAxBxAxBxAyB
10 6 9 mpbid x=yxAxBxAyB
11 10 imp x=yxAxBxAyB
12 rspe xAyBxAyB
13 4 11 12 syl2anc x=yxAxBxAxAyB
14 abid yy|xAyBxAyB
15 13 14 sylibr x=yxAxBxAyy|xAyB
16 eleq1 x=yxy|xAyByy|xAyB
17 16 ad2antrr x=yxAxBxAxy|xAyByy|xAyB
18 15 17 mpbird x=yxAxBxAxy|xAyB
19 df-iun xAB=y|xAyB
20 18 19 eleqtrrdi x=yxAxBxAxxAB
21 20 expl x=yxAxBxAxxAB
22 21 equcoms y=xxAxBxAxxAB
23 22 vtocleg xAxAxBxAxxAB
24 23 anabsi7 xAxBxAxxAB
25 24 ex xAxBxAxxAB
26 1 2 3 25 ssrd xAxBAxAB