Metamath Proof Explorer


Theorem rankval4b

Description: The rank of a set is the supremum of the successors of the ranks of its members. Exercise 9.1 of Jech p. 72. Also a special case of Theorem 7V(b) of Enderton p. 204. This variant of rankval4 does not use Regularity, and so requires the assumption that A is in the range of R1 . (Contributed by BTernaryTau, 19-Jan-2026)

Ref Expression
Assertion rankval4b A R1 On rank A = x A suc rank x

Proof

Step Hyp Ref Expression
1 r1wf R1 x A suc rank x R1 On
2 rankon rank x On
3 2 onsuci suc rank x On
4 3 rgenw x A suc rank x On
5 iunon A R1 On x A suc rank x On x A suc rank x On
6 4 5 mpan2 A R1 On x A suc rank x On
7 r1ord3 suc rank x On x A suc rank x On suc rank x x A suc rank x R1 suc rank x R1 x A suc rank x
8 3 6 7 sylancr A R1 On suc rank x x A suc rank x R1 suc rank x R1 x A suc rank x
9 ssiun2 x A suc rank x x A suc rank x
10 8 9 impel A R1 On x A R1 suc rank x R1 x A suc rank x
11 elwf A R1 On x A x R1 On
12 rankidb x R1 On x R1 suc rank x
13 11 12 syl A R1 On x A x R1 suc rank x
14 10 13 sseldd A R1 On x A x R1 x A suc rank x
15 14 ex A R1 On x A x R1 x A suc rank x
16 15 alrimiv A R1 On x x A x R1 x A suc rank x
17 nfcv _ x A
18 nfcv _ x R1
19 nfiu1 _ x x A suc rank x
20 18 19 nffv _ x R1 x A suc rank x
21 17 20 dfssf A R1 x A suc rank x x x A x R1 x A suc rank x
22 16 21 sylibr A R1 On A R1 x A suc rank x
23 rankssb R1 x A suc rank x R1 On A R1 x A suc rank x rank A rank R1 x A suc rank x
24 1 22 23 mpsyl A R1 On rank A rank R1 x A suc rank x
25 r1ord3 x A suc rank x On y On x A suc rank x y R1 x A suc rank x R1 y
26 6 25 sylan A R1 On y On x A suc rank x y R1 x A suc rank x R1 y
27 26 ss2rabdv A R1 On y On | x A suc rank x y y On | R1 x A suc rank x R1 y
28 intss y On | x A suc rank x y y On | R1 x A suc rank x R1 y y On | R1 x A suc rank x R1 y y On | x A suc rank x y
29 27 28 syl A R1 On y On | R1 x A suc rank x R1 y y On | x A suc rank x y
30 rankval2b R1 x A suc rank x R1 On rank R1 x A suc rank x = y On | R1 x A suc rank x R1 y
31 1 30 mp1i A R1 On rank R1 x A suc rank x = y On | R1 x A suc rank x R1 y
32 intmin x A suc rank x On y On | x A suc rank x y = x A suc rank x
33 6 32 syl A R1 On y On | x A suc rank x y = x A suc rank x
34 33 eqcomd A R1 On x A suc rank x = y On | x A suc rank x y
35 29 31 34 3sstr4d A R1 On rank R1 x A suc rank x x A suc rank x
36 24 35 sstrd A R1 On rank A x A suc rank x
37 rankelb A R1 On x A rank x rank A
38 rankon rank A On
39 2 38 onsucssi rank x rank A suc rank x rank A
40 37 39 imbitrdi A R1 On x A suc rank x rank A
41 40 ralrimiv A R1 On x A suc rank x rank A
42 iunss x A suc rank x rank A x A suc rank x rank A
43 41 42 sylibr A R1 On x A suc rank x rank A
44 36 43 eqssd A R1 On rank A = x A suc rank x