| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankxplim.1 |
|
| 2 |
|
rankxplim.2 |
|
| 3 |
|
unixp |
|
| 4 |
3
|
fveq2d |
|
| 5 |
|
rankuni |
|
| 6 |
|
rankuni |
|
| 7 |
6
|
unieqi |
|
| 8 |
5 7
|
eqtri |
|
| 9 |
4 8
|
eqtr3di |
|
| 10 |
|
suc11reg |
|
| 11 |
9 10
|
sylibr |
|
| 12 |
11
|
adantl |
|
| 13 |
|
fvex |
|
| 14 |
|
eleq1 |
|
| 15 |
13 14
|
mpbii |
|
| 16 |
|
sucexb |
|
| 17 |
15 16
|
sylibr |
|
| 18 |
|
nlimsucg |
|
| 19 |
17 18
|
syl |
|
| 20 |
|
limeq |
|
| 21 |
19 20
|
mtbird |
|
| 22 |
1 2
|
rankxplim2 |
|
| 23 |
21 22
|
nsyl |
|
| 24 |
1 2
|
xpex |
|
| 25 |
24
|
rankeq0 |
|
| 26 |
25
|
necon3abii |
|
| 27 |
|
rankon |
|
| 28 |
27
|
onordi |
|
| 29 |
|
ordzsl |
|
| 30 |
28 29
|
mpbi |
|
| 31 |
|
3orass |
|
| 32 |
30 31
|
mpbi |
|
| 33 |
32
|
ori |
|
| 34 |
26 33
|
sylbi |
|
| 35 |
34
|
ord |
|
| 36 |
35
|
con1d |
|
| 37 |
23 36
|
syl5com |
|
| 38 |
|
nlimsucg |
|
| 39 |
38
|
elv |
|
| 40 |
|
limeq |
|
| 41 |
39 40
|
mtbiri |
|
| 42 |
41
|
rexlimivw |
|
| 43 |
1 2
|
rankxplim3 |
|
| 44 |
42 43
|
sylnib |
|
| 45 |
37 44
|
syl6com |
|
| 46 |
|
unixp0 |
|
| 47 |
24
|
uniex |
|
| 48 |
47
|
rankeq0 |
|
| 49 |
6
|
eqeq1i |
|
| 50 |
46 48 49
|
3bitri |
|
| 51 |
50
|
necon3abii |
|
| 52 |
|
onuni |
|
| 53 |
27 52
|
ax-mp |
|
| 54 |
53
|
onordi |
|
| 55 |
|
ordzsl |
|
| 56 |
54 55
|
mpbi |
|
| 57 |
|
3orass |
|
| 58 |
56 57
|
mpbi |
|
| 59 |
58
|
ori |
|
| 60 |
51 59
|
sylbi |
|
| 61 |
60
|
ord |
|
| 62 |
61
|
con1d |
|
| 63 |
45 62
|
syld |
|
| 64 |
63
|
impcom |
|
| 65 |
|
onsucuni2 |
|
| 66 |
53 65
|
mpan |
|
| 67 |
66
|
rexlimivw |
|
| 68 |
64 67
|
syl |
|
| 69 |
12 68
|
eqtrd |
|
| 70 |
|
suc11reg |
|
| 71 |
69 70
|
sylibr |
|
| 72 |
37
|
imp |
|
| 73 |
|
onsucuni2 |
|
| 74 |
27 73
|
mpan |
|
| 75 |
74
|
rexlimivw |
|
| 76 |
72 75
|
syl |
|
| 77 |
71 76
|
eqtr2d |
|