Metamath Proof Explorer


Theorem readdcnnred

Description: The sum of a real number and an imaginary number is not a real number. (Contributed by AV, 23-Jan-2023)

Ref Expression
Hypotheses recnaddnred.a φ A
recnaddnred.b φ B
Assertion readdcnnred φ A + B

Proof

Step Hyp Ref Expression
1 recnaddnred.a φ A
2 recnaddnred.b φ B
3 2 eldifbd φ ¬ B
4 df-nel A + B ¬ A + B
5 1 recnd φ A
6 2 eldifad φ B
7 5 6 addcld φ A + B
8 reim0b A + B A + B A + B = 0
9 7 8 syl φ A + B A + B = 0
10 1 reim0d φ A = 0
11 10 oveq1d φ A + B = 0 + B
12 6 imcld φ B
13 12 recnd φ B
14 13 addid2d φ 0 + B = B
15 11 14 eqtrd φ A + B = B
16 15 eqeq1d φ A + B = 0 B = 0
17 5 6 imaddd φ A + B = A + B
18 17 eqeq1d φ A + B = 0 A + B = 0
19 reim0b B B B = 0
20 6 19 syl φ B B = 0
21 16 18 20 3bitr4d φ A + B = 0 B
22 9 21 bitrd φ A + B B
23 22 notbid φ ¬ A + B ¬ B
24 4 23 syl5bb φ A + B ¬ B
25 3 24 mpbird φ A + B