Description: The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | relexpnndm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | dmeqd | |
3 | 2 | sseq1d | |
4 | 3 | imbi2d | |
5 | oveq2 | |
|
6 | 5 | dmeqd | |
7 | 6 | sseq1d | |
8 | 7 | imbi2d | |
9 | oveq2 | |
|
10 | 9 | dmeqd | |
11 | 10 | sseq1d | |
12 | 11 | imbi2d | |
13 | oveq2 | |
|
14 | 13 | dmeqd | |
15 | 14 | sseq1d | |
16 | 15 | imbi2d | |
17 | relexp1g | |
|
18 | 17 | dmeqd | |
19 | eqimss | |
|
20 | 18 19 | syl | |
21 | relexpsucnnr | |
|
22 | 21 | ancoms | |
23 | 22 | dmeqd | |
24 | dmcoss | |
|
25 | 23 24 | eqsstrdi | |
26 | 25 | a1d | |
27 | 26 | ex | |
28 | 27 | a2d | |
29 | 4 8 12 16 20 28 | nnind | |
30 | 29 | imp | |