Metamath Proof Explorer


Theorem relexpnndm

Description: The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020)

Ref Expression
Assertion relexpnndm NRVdomRrNdomR

Proof

Step Hyp Ref Expression
1 oveq2 n=1Rrn=Rr1
2 1 dmeqd n=1domRrn=domRr1
3 2 sseq1d n=1domRrndomRdomRr1domR
4 3 imbi2d n=1RVdomRrndomRRVdomRr1domR
5 oveq2 n=mRrn=Rrm
6 5 dmeqd n=mdomRrn=domRrm
7 6 sseq1d n=mdomRrndomRdomRrmdomR
8 7 imbi2d n=mRVdomRrndomRRVdomRrmdomR
9 oveq2 n=m+1Rrn=Rrm+1
10 9 dmeqd n=m+1domRrn=domRrm+1
11 10 sseq1d n=m+1domRrndomRdomRrm+1domR
12 11 imbi2d n=m+1RVdomRrndomRRVdomRrm+1domR
13 oveq2 n=NRrn=RrN
14 13 dmeqd n=NdomRrn=domRrN
15 14 sseq1d n=NdomRrndomRdomRrNdomR
16 15 imbi2d n=NRVdomRrndomRRVdomRrNdomR
17 relexp1g RVRr1=R
18 17 dmeqd RVdomRr1=domR
19 eqimss domRr1=domRdomRr1domR
20 18 19 syl RVdomRr1domR
21 relexpsucnnr RVmRrm+1=RrmR
22 21 ancoms mRVRrm+1=RrmR
23 22 dmeqd mRVdomRrm+1=domRrmR
24 dmcoss domRrmRdomR
25 23 24 eqsstrdi mRVdomRrm+1domR
26 25 a1d mRVdomRrmdomRdomRrm+1domR
27 26 ex mRVdomRrmdomRdomRrm+1domR
28 27 a2d mRVdomRrmdomRRVdomRrm+1domR
29 4 8 12 16 20 28 nnind NRVdomRrNdomR
30 29 imp NRVdomRrNdomR