Metamath Proof Explorer


Theorem repsdf2

Description: Alternative definition of a "repeated symbol word". (Contributed by AV, 7-Nov-2018)

Ref Expression
Assertion repsdf2 SVN0W=SrepeatSNWWordVW=Ni0..^NWi=S

Proof

Step Hyp Ref Expression
1 repsconst SVN0SrepeatSN=0..^N×S
2 1 eqeq2d SVN0W=SrepeatSNW=0..^N×S
3 fconst2g SVW:0..^NSW=0..^N×S
4 3 adantr SVN0W:0..^NSW=0..^N×S
5 fconstfv W:0..^NSWFn0..^Ni0..^NWi=S
6 snssi SVSV
7 6 adantr SVN0SV
8 7 anim1ci SVN0W:0..^NSW:0..^NSSV
9 fss W:0..^NSSVW:0..^NV
10 iswrdi W:0..^NVWWordV
11 8 9 10 3syl SVN0W:0..^NSWWordV
12 ffzo0hash N0WFn0..^NW=N
13 12 expcom WFn0..^NN0W=N
14 ffn W:0..^NSWFn0..^N
15 13 14 syl11 N0W:0..^NSW=N
16 15 adantl SVN0W:0..^NSW=N
17 16 imp SVN0W:0..^NSW=N
18 11 17 jca SVN0W:0..^NSWWordVW=N
19 18 ex SVN0W:0..^NSWWordVW=N
20 5 19 biimtrrid SVN0WFn0..^Ni0..^NWi=SWWordVW=N
21 20 expcomd SVN0i0..^NWi=SWFn0..^NWWordVW=N
22 21 imp SVN0i0..^NWi=SWFn0..^NWWordVW=N
23 wrdf WWordVW:0..^WV
24 ffn W:0..^WVWFn0..^W
25 oveq2 W=N0..^W=0..^N
26 25 fneq2d W=NWFn0..^WWFn0..^N
27 26 biimpd W=NWFn0..^WWFn0..^N
28 27 a1d W=NSVN0WFn0..^WWFn0..^N
29 28 com13 WFn0..^WSVN0W=NWFn0..^N
30 23 24 29 3syl WWordVSVN0W=NWFn0..^N
31 30 com12 SVN0WWordVW=NWFn0..^N
32 31 impd SVN0WWordVW=NWFn0..^N
33 32 adantr SVN0i0..^NWi=SWWordVW=NWFn0..^N
34 22 33 impbid SVN0i0..^NWi=SWFn0..^NWWordVW=N
35 34 ex SVN0i0..^NWi=SWFn0..^NWWordVW=N
36 35 pm5.32rd SVN0WFn0..^Ni0..^NWi=SWWordVW=Ni0..^NWi=S
37 df-3an WWordVW=Ni0..^NWi=SWWordVW=Ni0..^NWi=S
38 36 5 37 3bitr4g SVN0W:0..^NSWWordVW=Ni0..^NWi=S
39 2 4 38 3bitr2d SVN0W=SrepeatSNWWordVW=Ni0..^NWi=S