Metamath Proof Explorer


Theorem resfunexg

Description: The restriction of a function to a set exists. Compare Proposition 6.17 of TakeutiZaring p. 28. (Contributed by NM, 7-Apr-1995) (Revised by Mario Carneiro, 22-Jun-2013)

Ref Expression
Assertion resfunexg FunABCABV

Proof

Step Hyp Ref Expression
1 funres FunAFunAB
2 1 adantr FunABCFunAB
3 2 funfnd FunABCABFndomAB
4 dffn5 ABFndomABAB=xdomABABx
5 3 4 sylib FunABCAB=xdomABABx
6 fvex ABxV
7 6 fnasrn xdomABABx=ranxdomABxABx
8 5 7 eqtrdi FunABCAB=ranxdomABxABx
9 opex xABxV
10 eqid xdomABxABx=xdomABxABx
11 9 10 dmmpti domxdomABxABx=domAB
12 11 imaeq2i xdomABxABxdomxdomABxABx=xdomABxABxdomAB
13 imadmrn xdomABxABxdomxdomABxABx=ranxdomABxABx
14 12 13 eqtr3i xdomABxABxdomAB=ranxdomABxABx
15 8 14 eqtr4di FunABCAB=xdomABxABxdomAB
16 funmpt FunxdomABxABx
17 dmresexg BCdomABV
18 17 adantl FunABCdomABV
19 funimaexg FunxdomABxABxdomABVxdomABxABxdomABV
20 16 18 19 sylancr FunABCxdomABxABxdomABV
21 15 20 eqeltrd FunABCABV