Metamath Proof Explorer


Theorem resfval2

Description: Value of the functor restriction operator. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses resfval.c φFV
resfval.d φHW
resfval2.g φGX
resfval2.d φHFnS×S
Assertion resfval2 φFGfH=FSxS,ySxGyxHy

Proof

Step Hyp Ref Expression
1 resfval.c φFV
2 resfval.d φHW
3 resfval2.g φGX
4 resfval2.d φHFnS×S
5 opex FGV
6 5 a1i φFGV
7 6 2 resfval φFGfH=1stFGdomdomHzdomH2ndFGzHz
8 op1stg FVGX1stFG=F
9 1 3 8 syl2anc φ1stFG=F
10 4 fndmd φdomH=S×S
11 10 dmeqd φdomdomH=domS×S
12 dmxpid domS×S=S
13 11 12 eqtrdi φdomdomH=S
14 9 13 reseq12d φ1stFGdomdomH=FS
15 op2ndg FVGX2ndFG=G
16 1 3 15 syl2anc φ2ndFG=G
17 16 fveq1d φ2ndFGz=Gz
18 17 reseq1d φ2ndFGzHz=GzHz
19 10 18 mpteq12dv φzdomH2ndFGzHz=zS×SGzHz
20 fveq2 z=xyGz=Gxy
21 df-ov xGy=Gxy
22 20 21 eqtr4di z=xyGz=xGy
23 fveq2 z=xyHz=Hxy
24 df-ov xHy=Hxy
25 23 24 eqtr4di z=xyHz=xHy
26 22 25 reseq12d z=xyGzHz=xGyxHy
27 26 mpompt zS×SGzHz=xS,ySxGyxHy
28 19 27 eqtrdi φzdomH2ndFGzHz=xS,ySxGyxHy
29 14 28 opeq12d φ1stFGdomdomHzdomH2ndFGzHz=FSxS,ySxGyxHy
30 7 29 eqtrd φFGfH=FSxS,ySxGyxHy