Description: The monic polynomials of a restricted polynomial algebra. (Contributed by Thierry Arnoux, 21-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ressply.1 | |
|
ressply.2 | |
||
ressply.3 | |
||
ressply.4 | |
||
ressply.5 | |
||
ressply1mon1p.m | |
||
ressply1mon1p.n | |
||
Assertion | ressply1mon1p | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressply.1 | |
|
2 | ressply.2 | |
|
3 | ressply.3 | |
|
4 | ressply.4 | |
|
5 | ressply.5 | |
|
6 | ressply1mon1p.m | |
|
7 | ressply1mon1p.n | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | 1 8 9 10 6 11 | ismon1p | |
13 | 12 | anbi2i | |
14 | eqid | |
|
15 | 1 2 3 4 5 14 | ressply1bas | |
16 | 14 8 | ressbasss | |
17 | 15 16 | eqsstrdi | |
18 | 17 | sseld | |
19 | 18 | pm4.71d | |
20 | 19 | anbi1d | |
21 | 13an22anass | |
|
22 | 20 21 | bitr4di | |
23 | 1 2 3 4 5 9 | ressply10g | |
24 | 23 | neeq2d | |
25 | 24 | adantr | |
26 | simpr | |
|
27 | 5 | adantr | |
28 | 2 10 3 4 26 27 | ressdeg1 | |
29 | 28 | fveq2d | |
30 | 2 11 | subrg1 | |
31 | 5 30 | syl | |
32 | 31 | adantr | |
33 | 29 32 | eqeq12d | |
34 | 25 33 | anbi12d | |
35 | 34 | pm5.32da | |
36 | 3anass | |
|
37 | 35 36 | bitr4di | |
38 | 22 37 | bitr3d | |
39 | 13 38 | bitr2id | |
40 | eqid | |
|
41 | eqid | |
|
42 | eqid | |
|
43 | 3 4 40 41 7 42 | ismon1p | |
44 | elin | |
|
45 | 39 43 44 | 3bitr4g | |
46 | 45 | eqrdv | |