Metamath Proof Explorer


Theorem ressply1mon1p

Description: The monic polynomials of a restricted polynomial algebra. (Contributed by Thierry Arnoux, 21-Jan-2025)

Ref Expression
Hypotheses ressply.1 S=Poly1R
ressply.2 H=R𝑠T
ressply.3 U=Poly1H
ressply.4 B=BaseU
ressply.5 φTSubRingR
ressply1mon1p.m M=Monic1pR
ressply1mon1p.n N=Monic1pH
Assertion ressply1mon1p φN=BM

Proof

Step Hyp Ref Expression
1 ressply.1 S=Poly1R
2 ressply.2 H=R𝑠T
3 ressply.3 U=Poly1H
4 ressply.4 B=BaseU
5 ressply.5 φTSubRingR
6 ressply1mon1p.m M=Monic1pR
7 ressply1mon1p.n N=Monic1pH
8 eqid BaseS=BaseS
9 eqid 0S=0S
10 eqid deg1R=deg1R
11 eqid 1R=1R
12 1 8 9 10 6 11 ismon1p pMpBaseSp0Scoe1pdeg1Rp=1R
13 12 anbi2i pBpMpBpBaseSp0Scoe1pdeg1Rp=1R
14 eqid S𝑠B=S𝑠B
15 1 2 3 4 5 14 ressply1bas φB=BaseS𝑠B
16 14 8 ressbasss BaseS𝑠BBaseS
17 15 16 eqsstrdi φBBaseS
18 17 sseld φpBpBaseS
19 18 pm4.71d φpBpBpBaseS
20 19 anbi1d φpBp0Scoe1pdeg1Rp=1RpBpBaseSp0Scoe1pdeg1Rp=1R
21 13an22anass pBpBaseSp0Scoe1pdeg1Rp=1RpBpBaseSp0Scoe1pdeg1Rp=1R
22 20 21 bitr4di φpBp0Scoe1pdeg1Rp=1RpBpBaseSp0Scoe1pdeg1Rp=1R
23 1 2 3 4 5 9 ressply10g φ0S=0U
24 23 neeq2d φp0Sp0U
25 24 adantr φpBp0Sp0U
26 simpr φpBpB
27 5 adantr φpBTSubRingR
28 2 10 3 4 26 27 ressdeg1 φpBdeg1Rp=deg1Hp
29 28 fveq2d φpBcoe1pdeg1Rp=coe1pdeg1Hp
30 2 11 subrg1 TSubRingR1R=1H
31 5 30 syl φ1R=1H
32 31 adantr φpB1R=1H
33 29 32 eqeq12d φpBcoe1pdeg1Rp=1Rcoe1pdeg1Hp=1H
34 25 33 anbi12d φpBp0Scoe1pdeg1Rp=1Rp0Ucoe1pdeg1Hp=1H
35 34 pm5.32da φpBp0Scoe1pdeg1Rp=1RpBp0Ucoe1pdeg1Hp=1H
36 3anass pBp0Ucoe1pdeg1Hp=1HpBp0Ucoe1pdeg1Hp=1H
37 35 36 bitr4di φpBp0Scoe1pdeg1Rp=1RpBp0Ucoe1pdeg1Hp=1H
38 22 37 bitr3d φpBpBaseSp0Scoe1pdeg1Rp=1RpBp0Ucoe1pdeg1Hp=1H
39 13 38 bitr2id φpBp0Ucoe1pdeg1Hp=1HpBpM
40 eqid 0U=0U
41 eqid deg1H=deg1H
42 eqid 1H=1H
43 3 4 40 41 7 42 ismon1p pNpBp0Ucoe1pdeg1Hp=1H
44 elin pBMpBpM
45 39 43 44 3bitr4g φpNpBM
46 45 eqrdv φN=BM