Metamath Proof Explorer


Theorem resspos

Description: The restriction of a Poset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018)

Ref Expression
Assertion resspos FPosetAVF𝑠APoset

Proof

Step Hyp Ref Expression
1 ovexd FPosetAVF𝑠AV
2 eqid F𝑠A=F𝑠A
3 eqid BaseF=BaseF
4 2 3 ressbas AVABaseF=BaseF𝑠A
5 inss2 ABaseFBaseF
6 4 5 eqsstrrdi AVBaseF𝑠ABaseF
7 6 adantl FPosetAVBaseF𝑠ABaseF
8 eqid F=F
9 3 8 ispos FPosetFVxBaseFyBaseFzBaseFxFxxFyyFxx=yxFyyFzxFz
10 9 simprbi FPosetxBaseFyBaseFzBaseFxFxxFyyFxx=yxFyyFzxFz
11 10 adantr FPosetAVxBaseFyBaseFzBaseFxFxxFyyFxx=yxFyyFzxFz
12 ssralv BaseF𝑠ABaseFzBaseFxFxxFyyFxx=yxFyyFzxFzzBaseF𝑠AxFxxFyyFxx=yxFyyFzxFz
13 12 ralimdv BaseF𝑠ABaseFyBaseFzBaseFxFxxFyyFxx=yxFyyFzxFzyBaseFzBaseF𝑠AxFxxFyyFxx=yxFyyFzxFz
14 ssralv BaseF𝑠ABaseFyBaseFzBaseF𝑠AxFxxFyyFxx=yxFyyFzxFzyBaseF𝑠AzBaseF𝑠AxFxxFyyFxx=yxFyyFzxFz
15 13 14 syld BaseF𝑠ABaseFyBaseFzBaseFxFxxFyyFxx=yxFyyFzxFzyBaseF𝑠AzBaseF𝑠AxFxxFyyFxx=yxFyyFzxFz
16 15 ralimdv BaseF𝑠ABaseFxBaseFyBaseFzBaseFxFxxFyyFxx=yxFyyFzxFzxBaseFyBaseF𝑠AzBaseF𝑠AxFxxFyyFxx=yxFyyFzxFz
17 ssralv BaseF𝑠ABaseFxBaseFyBaseF𝑠AzBaseF𝑠AxFxxFyyFxx=yxFyyFzxFzxBaseF𝑠AyBaseF𝑠AzBaseF𝑠AxFxxFyyFxx=yxFyyFzxFz
18 16 17 syld BaseF𝑠ABaseFxBaseFyBaseFzBaseFxFxxFyyFxx=yxFyyFzxFzxBaseF𝑠AyBaseF𝑠AzBaseF𝑠AxFxxFyyFxx=yxFyyFzxFz
19 7 11 18 sylc FPosetAVxBaseF𝑠AyBaseF𝑠AzBaseF𝑠AxFxxFyyFxx=yxFyyFzxFz
20 2 8 ressle AVF=F𝑠A
21 20 adantl FPosetAVF=F𝑠A
22 breq F=F𝑠AxFxxF𝑠Ax
23 breq F=F𝑠AxFyxF𝑠Ay
24 breq F=F𝑠AyFxyF𝑠Ax
25 23 24 anbi12d F=F𝑠AxFyyFxxF𝑠AyyF𝑠Ax
26 25 imbi1d F=F𝑠AxFyyFxx=yxF𝑠AyyF𝑠Axx=y
27 breq F=F𝑠AyFzyF𝑠Az
28 23 27 anbi12d F=F𝑠AxFyyFzxF𝑠AyyF𝑠Az
29 breq F=F𝑠AxFzxF𝑠Az
30 28 29 imbi12d F=F𝑠AxFyyFzxFzxF𝑠AyyF𝑠AzxF𝑠Az
31 22 26 30 3anbi123d F=F𝑠AxFxxFyyFxx=yxFyyFzxFzxF𝑠AxxF𝑠AyyF𝑠Axx=yxF𝑠AyyF𝑠AzxF𝑠Az
32 31 ralbidv F=F𝑠AzBaseF𝑠AxFxxFyyFxx=yxFyyFzxFzzBaseF𝑠AxF𝑠AxxF𝑠AyyF𝑠Axx=yxF𝑠AyyF𝑠AzxF𝑠Az
33 32 2ralbidv F=F𝑠AxBaseF𝑠AyBaseF𝑠AzBaseF𝑠AxFxxFyyFxx=yxFyyFzxFzxBaseF𝑠AyBaseF𝑠AzBaseF𝑠AxF𝑠AxxF𝑠AyyF𝑠Axx=yxF𝑠AyyF𝑠AzxF𝑠Az
34 21 33 syl FPosetAVxBaseF𝑠AyBaseF𝑠AzBaseF𝑠AxFxxFyyFxx=yxFyyFzxFzxBaseF𝑠AyBaseF𝑠AzBaseF𝑠AxF𝑠AxxF𝑠AyyF𝑠Axx=yxF𝑠AyyF𝑠AzxF𝑠Az
35 19 34 mpbid FPosetAVxBaseF𝑠AyBaseF𝑠AzBaseF𝑠AxF𝑠AxxF𝑠AyyF𝑠Axx=yxF𝑠AyyF𝑠AzxF𝑠Az
36 eqid BaseF𝑠A=BaseF𝑠A
37 eqid F𝑠A=F𝑠A
38 36 37 ispos F𝑠APosetF𝑠AVxBaseF𝑠AyBaseF𝑠AzBaseF𝑠AxF𝑠AxxF𝑠AyyF𝑠Axx=yxF𝑠AyyF𝑠AzxF𝑠Az
39 1 35 38 sylanbrc FPosetAVF𝑠APoset