Step |
Hyp |
Ref |
Expression |
1 |
|
resssetc.c |
|
2 |
|
resssetc.d |
|
3 |
|
resssetc.1 |
|
4 |
|
resssetc.2 |
|
5 |
3 4
|
ssexd |
|
6 |
5
|
adantr |
|
7 |
|
eqid |
|
8 |
|
simprl |
|
9 |
|
simprr |
|
10 |
2 6 7 8 9
|
setchom |
|
11 |
3
|
adantr |
|
12 |
|
eqid |
|
13 |
4
|
adantr |
|
14 |
13 8
|
sseldd |
|
15 |
13 9
|
sseldd |
|
16 |
1 11 12 14 15
|
setchom |
|
17 |
|
eqid |
|
18 |
17 12
|
resshom |
|
19 |
5 18
|
syl |
|
20 |
19
|
oveqdr |
|
21 |
10 16 20
|
3eqtr2rd |
|
22 |
21
|
ralrimivva |
|
23 |
|
eqid |
|
24 |
1 3
|
setcbas |
|
25 |
4 24
|
sseqtrd |
|
26 |
|
eqid |
|
27 |
17 26
|
ressbas2 |
|
28 |
25 27
|
syl |
|
29 |
2 5
|
setcbas |
|
30 |
23 7 28 29
|
homfeq |
|
31 |
22 30
|
mpbird |
|
32 |
5
|
ad2antrr |
|
33 |
|
eqid |
|
34 |
|
simplr1 |
|
35 |
|
simplr2 |
|
36 |
|
simplr3 |
|
37 |
|
simprl |
|
38 |
2 32 7 34 35
|
elsetchom |
|
39 |
37 38
|
mpbid |
|
40 |
|
simprr |
|
41 |
2 32 7 35 36
|
elsetchom |
|
42 |
40 41
|
mpbid |
|
43 |
2 32 33 34 35 36 39 42
|
setcco |
|
44 |
3
|
ad2antrr |
|
45 |
|
eqid |
|
46 |
4
|
ad2antrr |
|
47 |
46 34
|
sseldd |
|
48 |
46 35
|
sseldd |
|
49 |
46 36
|
sseldd |
|
50 |
1 44 45 47 48 49 39 42
|
setcco |
|
51 |
17 45
|
ressco |
|
52 |
5 51
|
syl |
|
53 |
52
|
ad2antrr |
|
54 |
53
|
oveqd |
|
55 |
54
|
oveqd |
|
56 |
43 50 55
|
3eqtr2d |
|
57 |
56
|
ralrimivva |
|
58 |
57
|
ralrimivvva |
|
59 |
|
eqid |
|
60 |
31
|
eqcomd |
|
61 |
33 59 7 29 28 60
|
comfeq |
|
62 |
58 61
|
mpbird |
|
63 |
62
|
eqcomd |
|
64 |
31 63
|
jca |
|