| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resssetc.c |
|
| 2 |
|
resssetc.d |
|
| 3 |
|
resssetc.1 |
|
| 4 |
|
resssetc.2 |
|
| 5 |
3 4
|
ssexd |
|
| 6 |
5
|
adantr |
|
| 7 |
|
eqid |
|
| 8 |
|
simprl |
|
| 9 |
|
simprr |
|
| 10 |
2 6 7 8 9
|
setchom |
|
| 11 |
3
|
adantr |
|
| 12 |
|
eqid |
|
| 13 |
4
|
adantr |
|
| 14 |
13 8
|
sseldd |
|
| 15 |
13 9
|
sseldd |
|
| 16 |
1 11 12 14 15
|
setchom |
|
| 17 |
|
eqid |
|
| 18 |
17 12
|
resshom |
|
| 19 |
5 18
|
syl |
|
| 20 |
19
|
oveqdr |
|
| 21 |
10 16 20
|
3eqtr2rd |
|
| 22 |
21
|
ralrimivva |
|
| 23 |
|
eqid |
|
| 24 |
1 3
|
setcbas |
|
| 25 |
4 24
|
sseqtrd |
|
| 26 |
|
eqid |
|
| 27 |
17 26
|
ressbas2 |
|
| 28 |
25 27
|
syl |
|
| 29 |
2 5
|
setcbas |
|
| 30 |
23 7 28 29
|
homfeq |
|
| 31 |
22 30
|
mpbird |
|
| 32 |
5
|
ad2antrr |
|
| 33 |
|
eqid |
|
| 34 |
|
simplr1 |
|
| 35 |
|
simplr2 |
|
| 36 |
|
simplr3 |
|
| 37 |
|
simprl |
|
| 38 |
2 32 7 34 35
|
elsetchom |
|
| 39 |
37 38
|
mpbid |
|
| 40 |
|
simprr |
|
| 41 |
2 32 7 35 36
|
elsetchom |
|
| 42 |
40 41
|
mpbid |
|
| 43 |
2 32 33 34 35 36 39 42
|
setcco |
|
| 44 |
3
|
ad2antrr |
|
| 45 |
|
eqid |
|
| 46 |
4
|
ad2antrr |
|
| 47 |
46 34
|
sseldd |
|
| 48 |
46 35
|
sseldd |
|
| 49 |
46 36
|
sseldd |
|
| 50 |
1 44 45 47 48 49 39 42
|
setcco |
|
| 51 |
17 45
|
ressco |
|
| 52 |
5 51
|
syl |
|
| 53 |
52
|
ad2antrr |
|
| 54 |
53
|
oveqd |
|
| 55 |
54
|
oveqd |
|
| 56 |
43 50 55
|
3eqtr2d |
|
| 57 |
56
|
ralrimivva |
|
| 58 |
57
|
ralrimivvva |
|
| 59 |
|
eqid |
|
| 60 |
31
|
eqcomd |
|
| 61 |
33 59 7 29 28 60
|
comfeq |
|
| 62 |
58 61
|
mpbird |
|
| 63 |
62
|
eqcomd |
|
| 64 |
31 63
|
jca |
|