Metamath Proof Explorer


Theorem funcsetcres2

Description: A functor into a smaller category of sets is a functor into the larger category. (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses resssetc.c C = SetCat U
resssetc.d D = SetCat V
resssetc.1 φ U W
resssetc.2 φ V U
Assertion funcsetcres2 φ E Func D E Func C

Proof

Step Hyp Ref Expression
1 resssetc.c C = SetCat U
2 resssetc.d D = SetCat V
3 resssetc.1 φ U W
4 resssetc.2 φ V U
5 eqidd φ f E Func D Hom 𝑓 E = Hom 𝑓 E
6 eqidd φ f E Func D comp 𝑓 E = comp 𝑓 E
7 eqid Base C = Base C
8 eqid Hom 𝑓 C = Hom 𝑓 C
9 1 setccat U W C Cat
10 3 9 syl φ C Cat
11 10 adantr φ f E Func D C Cat
12 1 3 setcbas φ U = Base C
13 4 12 sseqtrd φ V Base C
14 13 adantr φ f E Func D V Base C
15 eqid C 𝑠 V = C 𝑠 V
16 eqid C cat Hom 𝑓 C V × V = C cat Hom 𝑓 C V × V
17 7 8 11 14 15 16 fullresc φ f E Func D Hom 𝑓 C 𝑠 V = Hom 𝑓 C cat Hom 𝑓 C V × V comp 𝑓 C 𝑠 V = comp 𝑓 C cat Hom 𝑓 C V × V
18 17 simpld φ f E Func D Hom 𝑓 C 𝑠 V = Hom 𝑓 C cat Hom 𝑓 C V × V
19 1 2 3 4 resssetc φ Hom 𝑓 C 𝑠 V = Hom 𝑓 D comp 𝑓 C 𝑠 V = comp 𝑓 D
20 19 adantr φ f E Func D Hom 𝑓 C 𝑠 V = Hom 𝑓 D comp 𝑓 C 𝑠 V = comp 𝑓 D
21 20 simpld φ f E Func D Hom 𝑓 C 𝑠 V = Hom 𝑓 D
22 18 21 eqtr3d φ f E Func D Hom 𝑓 C cat Hom 𝑓 C V × V = Hom 𝑓 D
23 17 simprd φ f E Func D comp 𝑓 C 𝑠 V = comp 𝑓 C cat Hom 𝑓 C V × V
24 20 simprd φ f E Func D comp 𝑓 C 𝑠 V = comp 𝑓 D
25 23 24 eqtr3d φ f E Func D comp 𝑓 C cat Hom 𝑓 C V × V = comp 𝑓 D
26 funcrcl f E Func D E Cat D Cat
27 26 adantl φ f E Func D E Cat D Cat
28 27 simpld φ f E Func D E Cat
29 7 8 11 14 fullsubc φ f E Func D Hom 𝑓 C V × V Subcat C
30 16 29 subccat φ f E Func D C cat Hom 𝑓 C V × V Cat
31 27 simprd φ f E Func D D Cat
32 5 6 22 25 28 28 30 31 funcpropd φ f E Func D E Func C cat Hom 𝑓 C V × V = E Func D
33 funcres2 Hom 𝑓 C V × V Subcat C E Func C cat Hom 𝑓 C V × V E Func C
34 29 33 syl φ f E Func D E Func C cat Hom 𝑓 C V × V E Func C
35 32 34 eqsstrrd φ f E Func D E Func D E Func C
36 simpr φ f E Func D f E Func D
37 35 36 sseldd φ f E Func D f E Func C
38 37 ex φ f E Func D f E Func C
39 38 ssrdv φ E Func D E Func C