Metamath Proof Explorer


Theorem resubcnnred

Description: The difference of a real number and an imaginary number is not a real number. (Contributed by AV, 23-Jan-2023)

Ref Expression
Hypotheses recnaddnred.a φ A
recnaddnred.b φ B
Assertion resubcnnred φ A B

Proof

Step Hyp Ref Expression
1 recnaddnred.a φ A
2 recnaddnred.b φ B
3 2 eldifbd φ ¬ B
4 df-nel A B ¬ A B
5 1 recnd φ A
6 2 eldifad φ B
7 5 6 subcld φ A B
8 reim0b A B A B A B = 0
9 7 8 syl φ A B A B = 0
10 1 reim0d φ A = 0
11 10 oveq1d φ A B = 0 B
12 df-neg B = 0 B
13 11 12 eqtr4di φ A B = B
14 13 eqeq1d φ A B = 0 B = 0
15 5 6 imsubd φ A B = A B
16 15 eqeq1d φ A B = 0 A B = 0
17 reim0b B B B = 0
18 6 17 syl φ B B = 0
19 6 imcld φ B
20 19 recnd φ B
21 20 negeq0d φ B = 0 B = 0
22 18 21 bitrd φ B B = 0
23 14 16 22 3bitr4d φ A B = 0 B
24 9 23 bitrd φ A B B
25 24 notbid φ ¬ A B ¬ B
26 4 25 syl5bb φ A B ¬ B
27 3 26 mpbird φ A B