Metamath Proof Explorer


Theorem resum2sqorgt0

Description: The sum of the square of two real numbers is greater than zero if at least one of the real numbers is nonzero. (Contributed by AV, 26-Feb-2023)

Ref Expression
Hypothesis resum2sqcl.q Q=A2+B2
Assertion resum2sqorgt0 ABA0B00<Q

Proof

Step Hyp Ref Expression
1 resum2sqcl.q Q=A2+B2
2 1 resum2sqgt0 AA0B0<Q
3 2 ex AA0B0<Q
4 3 expcom A0AB0<Q
5 4 com23 A0BA0<Q
6 eqid B2+A2=B2+A2
7 6 resum2sqgt0 BB0A0<B2+A2
8 1 breq2i 0<Q0<A2+B2
9 resqcl AA2
10 9 adantl BB0AA2
11 10 recnd BB0AA2
12 resqcl BB2
13 12 ad2antrr BB0AB2
14 13 recnd BB0AB2
15 11 14 addcomd BB0AA2+B2=B2+A2
16 15 breq2d BB0A0<A2+B20<B2+A2
17 8 16 bitrid BB0A0<Q0<B2+A2
18 7 17 mpbird BB0A0<Q
19 18 ex BB0A0<Q
20 19 expcom B0BA0<Q
21 5 20 jaoi A0B0BA0<Q
22 21 3imp31 ABA0B00<Q