Metamath Proof Explorer


Theorem retire

Description: Commuted version of itrere . (Contributed by SN, 27-Jun-2024)

Ref Expression
Assertion retire RRiR=0

Proof

Step Hyp Ref Expression
1 ax-rrecex RR0xRx=1
2 sn-inelr ¬i
3 simplll RR0xRx=1RiR
4 simplrl RR0xRx=1Rix
5 simplrr RR0xRx=1RiRx=1
6 3 4 5 remulinvcom RR0xRx=1RixR=1
7 6 oveq1d RR0xRx=1RixRi=1i
8 4 recnd RR0xRx=1Rix
9 3 recnd RR0xRx=1RiR
10 ax-icn i
11 10 a1i RR0xRx=1Rii
12 8 9 11 mulassd RR0xRx=1RixRi=xRi
13 sn-1ticom 1i=i1
14 it1ei i1=i
15 13 14 eqtri 1i=i
16 15 a1i RR0xRx=1Ri1i=i
17 7 12 16 3eqtr3d RR0xRx=1RixRi=i
18 simpr RR0xRx=1RiRi
19 4 18 remulcld RR0xRx=1RixRi
20 17 19 eqeltrrd RR0xRx=1Rii
21 20 ex RR0xRx=1Rii
22 2 21 mtoi RR0xRx=1¬Ri
23 1 22 rexlimddv RR0¬Ri
24 23 ex RR0¬Ri
25 24 necon4ad RRiR=0
26 oveq1 R=0Ri=0i
27 sn-0tie0 0i=0
28 0re 0
29 27 28 eqeltri 0i
30 26 29 eqeltrdi R=0Ri
31 25 30 impbid1 RRiR=0