Metamath Proof Explorer


Theorem reuxfrdf

Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Cf. reuxfrd (Contributed by Thierry Arnoux, 7-Apr-2017) (Revised by Thierry Arnoux, 8-Oct-2017) (Revised by Thierry Arnoux, 30-Mar-2018)

Ref Expression
Hypotheses reuxfrdf.0 _yB
reuxfrdf.1 φyCAB
reuxfrdf.2 φxB*yCx=A
Assertion reuxfrdf φ∃!xByCx=Aψ∃!yCψ

Proof

Step Hyp Ref Expression
1 reuxfrdf.0 _yB
2 reuxfrdf.1 φyCAB
3 reuxfrdf.2 φxB*yCx=A
4 rmoan *yCx=A*yCψx=A
5 3 4 syl φxB*yCψx=A
6 ancom ψx=Ax=Aψ
7 6 rmobii *yCψx=A*yCx=Aψ
8 5 7 sylib φxB*yCx=Aψ
9 8 ralrimiva φxB*yCx=Aψ
10 df-rmo *yCx=Aψ*yyCx=Aψ
11 10 ralbii xB*yCx=AψxB*yyCx=Aψ
12 df-ral xB*yyCx=AψxxB*yyCx=Aψ
13 1 nfcri yxB
14 13 moanim *yxByCx=AψxB*yyCx=Aψ
15 14 albii x*yxByCx=AψxxB*yyCx=Aψ
16 12 15 bitr4i xB*yyCx=Aψx*yxByCx=Aψ
17 2euswapv x*yxByCx=Aψ∃!xyxByCx=Aψ∃!yxxByCx=Aψ
18 df-reu ∃!xByCx=Aψ∃!xxByCx=Aψ
19 13 r19.41 yCx=AψxByCx=AψxB
20 ancom xBx=Aψx=AψxB
21 20 rexbii yCxBx=AψyCx=AψxB
22 ancom xByCx=AψyCx=AψxB
23 19 21 22 3bitr4i yCxBx=AψxByCx=Aψ
24 df-rex yCxBx=AψyyCxBx=Aψ
25 23 24 bitr3i xByCx=AψyyCxBx=Aψ
26 an12 yCxBx=AψxByCx=Aψ
27 26 exbii yyCxBx=AψyxByCx=Aψ
28 25 27 bitri xByCx=AψyxByCx=Aψ
29 28 eubii ∃!xxByCx=Aψ∃!xyxByCx=Aψ
30 18 29 bitri ∃!xByCx=Aψ∃!xyxByCx=Aψ
31 df-reu ∃!yCxBx=Aψ∃!yyCxBx=Aψ
32 nfv xyC
33 32 r19.41 xBx=AψyCxBx=AψyC
34 ancom yCx=Aψx=AψyC
35 34 rexbii xByCx=AψxBx=AψyC
36 ancom yCxBx=AψxBx=AψyC
37 33 35 36 3bitr4i xByCx=AψyCxBx=Aψ
38 df-rex xByCx=AψxxByCx=Aψ
39 37 38 bitr3i yCxBx=AψxxByCx=Aψ
40 39 eubii ∃!yyCxBx=Aψ∃!yxxByCx=Aψ
41 31 40 bitri ∃!yCxBx=Aψ∃!yxxByCx=Aψ
42 17 30 41 3imtr4g x*yxByCx=Aψ∃!xByCx=Aψ∃!yCxBx=Aψ
43 16 42 sylbi xB*yyCx=Aψ∃!xByCx=Aψ∃!yCxBx=Aψ
44 11 43 sylbi xB*yCx=Aψ∃!xByCx=Aψ∃!yCxBx=Aψ
45 9 44 syl φ∃!xByCx=Aψ∃!yCxBx=Aψ
46 df-ral yC*xxBx=AψyyC*xxBx=Aψ
47 moanimv *xyCxBx=AψyC*xxBx=Aψ
48 47 albii y*xyCxBx=AψyyC*xxBx=Aψ
49 46 48 bitr4i yC*xxBx=Aψy*xyCxBx=Aψ
50 2euswapv y*xyCxBx=Aψ∃!yxyCxBx=Aψ∃!xyyCxBx=Aψ
51 r19.42v xByCx=AψyCxBx=Aψ
52 51 38 bitr3i yCxBx=AψxxByCx=Aψ
53 an12 xByCx=AψyCxBx=Aψ
54 53 exbii xxByCx=AψxyCxBx=Aψ
55 52 54 bitri yCxBx=AψxyCxBx=Aψ
56 55 eubii ∃!yyCxBx=Aψ∃!yxyCxBx=Aψ
57 31 56 bitri ∃!yCxBx=Aψ∃!yxyCxBx=Aψ
58 25 eubii ∃!xxByCx=Aψ∃!xyyCxBx=Aψ
59 18 58 bitri ∃!xByCx=Aψ∃!xyyCxBx=Aψ
60 50 57 59 3imtr4g y*xyCxBx=Aψ∃!yCxBx=Aψ∃!xByCx=Aψ
61 49 60 sylbi yC*xxBx=Aψ∃!yCxBx=Aψ∃!xByCx=Aψ
62 moeq *xx=A
63 62 moani *xxBψx=A
64 ancom xBψx=Ax=AxBψ
65 an12 x=AxBψxBx=Aψ
66 64 65 bitri xBψx=AxBx=Aψ
67 66 mobii *xxBψx=A*xxBx=Aψ
68 63 67 mpbi *xxBx=Aψ
69 68 a1i yC*xxBx=Aψ
70 61 69 mprg ∃!yCxBx=Aψ∃!xByCx=Aψ
71 45 70 impbid1 φ∃!xByCx=Aψ∃!yCxBx=Aψ
72 biidd x=Aψψ
73 72 ceqsrexv ABxBx=Aψψ
74 2 73 syl φyCxBx=Aψψ
75 74 reubidva φ∃!yCxBx=Aψ∃!yCψ
76 71 75 bitrd φ∃!xByCx=Aψ∃!yCψ