Metamath Proof Explorer


Theorem rexanre

Description: Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016)

Ref Expression
Assertion rexanre AjkAjkφψjkAjkφjkAjkψ

Proof

Step Hyp Ref Expression
1 simpl φψφ
2 1 imim2i jkφψjkφ
3 2 ralimi kAjkφψkAjkφ
4 3 reximi jkAjkφψjkAjkφ
5 simpr φψψ
6 5 imim2i jkφψjkψ
7 6 ralimi kAjkφψkAjkψ
8 7 reximi jkAjkφψjkAjkψ
9 4 8 jca jkAjkφψjkAjkφjkAjkψ
10 breq1 j=xjkxk
11 10 imbi1d j=xjkφxkφ
12 11 ralbidv j=xkAjkφkAxkφ
13 12 cbvrexvw jkAjkφxkAxkφ
14 breq1 j=yjkyk
15 14 imbi1d j=yjkψykψ
16 15 ralbidv j=ykAjkψkAykψ
17 16 cbvrexvw jkAjkψykAykψ
18 13 17 anbi12i jkAjkφjkAjkψxkAxkφykAykψ
19 reeanv xykAxkφkAykψxkAxkφykAykψ
20 18 19 bitr4i jkAjkφjkAjkψxykAxkφkAykψ
21 ifcl yxifxyyx
22 21 ancoms xyifxyyx
23 22 adantl Axyifxyyx
24 r19.26 kAxkφykψkAxkφkAykψ
25 anim12 xkφykψxkykφψ
26 simplrl AxykAx
27 simplrr AxykAy
28 simpl AxyA
29 28 sselda AxykAk
30 maxle xykifxyyxkxkyk
31 26 27 29 30 syl3anc AxykAifxyyxkxkyk
32 31 imbi1d AxykAifxyyxkφψxkykφψ
33 25 32 imbitrrid AxykAxkφykψifxyyxkφψ
34 33 ralimdva AxykAxkφykψkAifxyyxkφψ
35 24 34 biimtrrid AxykAxkφkAykψkAifxyyxkφψ
36 breq1 j=ifxyyxjkifxyyxk
37 36 rspceaimv ifxyyxkAifxyyxkφψjkAjkφψ
38 23 35 37 syl6an AxykAxkφkAykψjkAjkφψ
39 38 rexlimdvva AxykAxkφkAykψjkAjkφψ
40 20 39 biimtrid AjkAjkφjkAjkψjkAjkφψ
41 9 40 impbid2 AjkAjkφψjkAjkφjkAjkψ