Metamath Proof Explorer


Theorem rexuz3

Description: Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013)

Ref Expression
Hypothesis rexuz3.1 Z=M
Assertion rexuz3 MjZkjφjkjφ

Proof

Step Hyp Ref Expression
1 rexuz3.1 Z=M
2 ralel kZkZ
3 fveq2 j=Mj=M
4 3 1 eqtr4di j=Mj=Z
5 4 raleqdv j=MkjkZkZkZ
6 5 rspcev MkZkZjkjkZ
7 2 6 mpan2 MjkjkZ
8 7 biantrurd MjkjφjkjkZjkjφ
9 1 uztrn2 jZkjkZ
10 9 a1d jZkjφkZ
11 10 ancrd jZkjφkZφ
12 11 ralimdva jZkjφkjkZφ
13 eluzelz jMj
14 13 1 eleq2s jZj
15 12 14 jctild jZkjφjkjkZφ
16 15 imp jZkjφjkjkZφ
17 uzid jjj
18 simpl kZφkZ
19 18 ralimi kjkZφkjkZ
20 eleq1w k=jkZjZ
21 20 rspcva jjkjkZjZ
22 17 19 21 syl2an jkjkZφjZ
23 simpr kZφφ
24 23 ralimi kjkZφkjφ
25 24 adantl jkjkZφkjφ
26 22 25 jca jkjkZφjZkjφ
27 16 26 impbii jZkjφjkjkZφ
28 27 rexbii2 jZkjφjkjkZφ
29 rexanuz jkjkZφjkjkZjkjφ
30 28 29 bitr2i jkjkZjkjφjZkjφ
31 8 30 bitr2di MjZkjφjkjφ