Metamath Proof Explorer


Theorem rhmmpllem1

Description: Lemma for rhmmpl . A subproof of psrmulcllem . (Contributed by SN, 8-Feb-2025)

Ref Expression
Hypotheses rhmmpllem1.d D=f0I|f-1Fin
rhmmpllem1.r φRRing
rhmmpllem1.x φX:DBaseR
rhmmpllem1.y φY:DBaseR
Assertion rhmmpllem1 φkDfinSupp0RxyD|yfkXxRYkfx

Proof

Step Hyp Ref Expression
1 rhmmpllem1.d D=f0I|f-1Fin
2 rhmmpllem1.r φRRing
3 rhmmpllem1.x φX:DBaseR
4 rhmmpllem1.y φY:DBaseR
5 ovexd φkDxyD|yfkXxRYkfxV
6 5 fmpttd φkDxyD|yfkXxRYkfx:yD|yfkV
7 1 psrbaglefi kDyD|yfkFin
8 7 adantl φkDyD|yfkFin
9 fvexd φkD0RV
10 6 8 9 fdmfifsupp φkDfinSupp0RxyD|yfkXxRYkfx