Metamath Proof Explorer


Theorem ringcsectALTV

Description: A section in the category of rings, written out. (Contributed by AV, 14-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses ringcsectALTV.c C=RingCatALTVU
ringcsectALTV.b B=BaseC
ringcsectALTV.u φUV
ringcsectALTV.x φXB
ringcsectALTV.y φYB
ringcsectALTV.e E=BaseX
ringcsectALTV.n S=SectC
Assertion ringcsectALTV φFXSYGFXRingHomYGYRingHomXGF=IE

Proof

Step Hyp Ref Expression
1 ringcsectALTV.c C=RingCatALTVU
2 ringcsectALTV.b B=BaseC
3 ringcsectALTV.u φUV
4 ringcsectALTV.x φXB
5 ringcsectALTV.y φYB
6 ringcsectALTV.e E=BaseX
7 ringcsectALTV.n S=SectC
8 eqid HomC=HomC
9 eqid compC=compC
10 eqid IdC=IdC
11 1 ringccatALTV UVCCat
12 3 11 syl φCCat
13 2 8 9 10 7 12 4 5 issect φFXSYGFXHomCYGYHomCXGXYcompCXF=IdCX
14 1 2 3 8 4 5 ringchomALTV φXHomCY=XRingHomY
15 14 eleq2d φFXHomCYFXRingHomY
16 1 2 3 8 5 4 ringchomALTV φYHomCX=YRingHomX
17 16 eleq2d φGYHomCXGYRingHomX
18 15 17 anbi12d φFXHomCYGYHomCXFXRingHomYGYRingHomX
19 18 anbi1d φFXHomCYGYHomCXGXYcompCXF=IdCXFXRingHomYGYRingHomXGXYcompCXF=IdCX
20 3 adantr φFXRingHomYGYRingHomXUV
21 4 adantr φFXRingHomYGYRingHomXXB
22 5 adantr φFXRingHomYGYRingHomXYB
23 simprl φFXRingHomYGYRingHomXFXRingHomY
24 simprr φFXRingHomYGYRingHomXGYRingHomX
25 1 2 20 9 21 22 21 23 24 ringccoALTV φFXRingHomYGYRingHomXGXYcompCXF=GF
26 1 2 10 3 4 6 ringcidALTV φIdCX=IE
27 26 adantr φFXRingHomYGYRingHomXIdCX=IE
28 25 27 eqeq12d φFXRingHomYGYRingHomXGXYcompCXF=IdCXGF=IE
29 28 pm5.32da φFXRingHomYGYRingHomXGXYcompCXF=IdCXFXRingHomYGYRingHomXGF=IE
30 19 29 bitrd φFXHomCYGYHomCXGXYcompCXF=IdCXFXRingHomYGYRingHomXGF=IE
31 df-3an FXHomCYGYHomCXGXYcompCXF=IdCXFXHomCYGYHomCXGXYcompCXF=IdCX
32 df-3an FXRingHomYGYRingHomXGF=IEFXRingHomYGYRingHomXGF=IE
33 30 31 32 3bitr4g φFXHomCYGYHomCXGXYcompCXF=IdCXFXRingHomYGYRingHomXGF=IE
34 13 33 bitrd φFXSYGFXRingHomYGYRingHomXGF=IE