Metamath Proof Explorer


Theorem ringcsectALTV

Description: A section in the category of rings, written out. (Contributed by AV, 14-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses ringcsectALTV.c C = RingCatALTV U
ringcsectALTV.b B = Base C
ringcsectALTV.u φ U V
ringcsectALTV.x φ X B
ringcsectALTV.y φ Y B
ringcsectALTV.e E = Base X
ringcsectALTV.n S = Sect C
Assertion ringcsectALTV φ F X S Y G F X RingHom Y G Y RingHom X G F = I E

Proof

Step Hyp Ref Expression
1 ringcsectALTV.c C = RingCatALTV U
2 ringcsectALTV.b B = Base C
3 ringcsectALTV.u φ U V
4 ringcsectALTV.x φ X B
5 ringcsectALTV.y φ Y B
6 ringcsectALTV.e E = Base X
7 ringcsectALTV.n S = Sect C
8 eqid Hom C = Hom C
9 eqid comp C = comp C
10 eqid Id C = Id C
11 1 ringccatALTV U V C Cat
12 3 11 syl φ C Cat
13 2 8 9 10 7 12 4 5 issect φ F X S Y G F X Hom C Y G Y Hom C X G X Y comp C X F = Id C X
14 1 2 3 8 4 5 ringchomALTV φ X Hom C Y = X RingHom Y
15 14 eleq2d φ F X Hom C Y F X RingHom Y
16 1 2 3 8 5 4 ringchomALTV φ Y Hom C X = Y RingHom X
17 16 eleq2d φ G Y Hom C X G Y RingHom X
18 15 17 anbi12d φ F X Hom C Y G Y Hom C X F X RingHom Y G Y RingHom X
19 18 anbi1d φ F X Hom C Y G Y Hom C X G X Y comp C X F = Id C X F X RingHom Y G Y RingHom X G X Y comp C X F = Id C X
20 3 adantr φ F X RingHom Y G Y RingHom X U V
21 4 adantr φ F X RingHom Y G Y RingHom X X B
22 5 adantr φ F X RingHom Y G Y RingHom X Y B
23 simprl φ F X RingHom Y G Y RingHom X F X RingHom Y
24 simprr φ F X RingHom Y G Y RingHom X G Y RingHom X
25 1 2 20 9 21 22 21 23 24 ringccoALTV φ F X RingHom Y G Y RingHom X G X Y comp C X F = G F
26 1 2 10 3 4 6 ringcidALTV φ Id C X = I E
27 26 adantr φ F X RingHom Y G Y RingHom X Id C X = I E
28 25 27 eqeq12d φ F X RingHom Y G Y RingHom X G X Y comp C X F = Id C X G F = I E
29 28 pm5.32da φ F X RingHom Y G Y RingHom X G X Y comp C X F = Id C X F X RingHom Y G Y RingHom X G F = I E
30 19 29 bitrd φ F X Hom C Y G Y Hom C X G X Y comp C X F = Id C X F X RingHom Y G Y RingHom X G F = I E
31 df-3an F X Hom C Y G Y Hom C X G X Y comp C X F = Id C X F X Hom C Y G Y Hom C X G X Y comp C X F = Id C X
32 df-3an F X RingHom Y G Y RingHom X G F = I E F X RingHom Y G Y RingHom X G F = I E
33 30 31 32 3bitr4g φ F X Hom C Y G Y Hom C X G X Y comp C X F = Id C X F X RingHom Y G Y RingHom X G F = I E
34 13 33 bitrd φ F X S Y G F X RingHom Y G Y RingHom X G F = I E