Metamath Proof Explorer


Theorem ringlsmss2

Description: The product with an ideal of a ring is a subset of that ideal. (Contributed by Thierry Arnoux, 2-Jun-2024)

Ref Expression
Hypotheses ringlsmss.1 B=BaseR
ringlsmss.2 G=mulGrpR
ringlsmss.3 ×˙=LSSumG
ringlsmss2.1 φRRing
ringlsmss2.2 φEB
ringlsmss2.3 φILIdealR
Assertion ringlsmss2 φE×˙II

Proof

Step Hyp Ref Expression
1 ringlsmss.1 B=BaseR
2 ringlsmss.2 G=mulGrpR
3 ringlsmss.3 ×˙=LSSumG
4 ringlsmss2.1 φRRing
5 ringlsmss2.2 φEB
6 ringlsmss2.3 φILIdealR
7 simpr φaE×˙IeEiIa=eRia=eRi
8 4 ad2antrr φeEiIRRing
9 6 ad2antrr φeEiIILIdealR
10 5 sselda φeEeB
11 10 adantr φeEiIeB
12 simpr φeEiIiI
13 eqid LIdealR=LIdealR
14 eqid R=R
15 13 1 14 lidlmcl RRingILIdealReBiIeRiI
16 8 9 11 12 15 syl22anc φeEiIeRiI
17 16 adantllr φaE×˙IeEiIeRiI
18 17 adantr φaE×˙IeEiIa=eRieRiI
19 7 18 eqeltrd φaE×˙IeEiIa=eRiaI
20 1 13 lidlss ILIdealRIB
21 6 20 syl φIB
22 1 14 2 3 5 21 elringlsm φaE×˙IeEiIa=eRi
23 22 biimpa φaE×˙IeEiIa=eRi
24 19 23 r19.29vva φaE×˙IaI
25 24 ex φaE×˙IaI
26 25 ssrdv φE×˙II