Description: The product with an ideal of a ring is a subset of that ideal. (Contributed by Thierry Arnoux, 2-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringlsmss.1 | |
|
ringlsmss.2 | |
||
ringlsmss.3 | |
||
ringlsmss2.1 | |
||
ringlsmss2.2 | |
||
ringlsmss2.3 | |
||
Assertion | ringlsmss2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringlsmss.1 | |
|
2 | ringlsmss.2 | |
|
3 | ringlsmss.3 | |
|
4 | ringlsmss2.1 | |
|
5 | ringlsmss2.2 | |
|
6 | ringlsmss2.3 | |
|
7 | simpr | |
|
8 | 4 | ad2antrr | |
9 | 6 | ad2antrr | |
10 | 5 | sselda | |
11 | 10 | adantr | |
12 | simpr | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | 13 1 14 | lidlmcl | |
16 | 8 9 11 12 15 | syl22anc | |
17 | 16 | adantllr | |
18 | 17 | adantr | |
19 | 7 18 | eqeltrd | |
20 | 1 13 | lidlss | |
21 | 6 20 | syl | |
22 | 1 14 2 3 5 21 | elringlsm | |
23 | 22 | biimpa | |
24 | 19 23 | r19.29vva | |
25 | 24 | ex | |
26 | 25 | ssrdv | |