Metamath Proof Explorer


Theorem rlimcnp3

Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function S ( y ) = R ( 1 / y ) at zero. (Contributed by Mario Carneiro, 1-Mar-2015)

Ref Expression
Hypotheses rlimcnp3.c φ C
rlimcnp3.r φ y + S
rlimcnp3.s y = 1 x S = R
rlimcnp3.j J = TopOpen fld
rlimcnp3.k K = J 𝑡 0 +∞
Assertion rlimcnp3 φ y + S C x 0 +∞ if x = 0 C R K CnP J 0

Proof

Step Hyp Ref Expression
1 rlimcnp3.c φ C
2 rlimcnp3.r φ y + S
3 rlimcnp3.s y = 1 x S = R
4 rlimcnp3.j J = TopOpen fld
5 rlimcnp3.k K = J 𝑡 0 +∞
6 ssidd φ 0 +∞ 0 +∞
7 0e0icopnf 0 0 +∞
8 7 a1i φ 0 0 +∞
9 rpssre +
10 9 a1i φ +
11 simpr φ y + y +
12 rpreccl y + 1 y +
13 12 adantl φ y + 1 y +
14 13 rpred φ y + 1 y
15 13 rpge0d φ y + 0 1 y
16 elrege0 1 y 0 +∞ 1 y 0 1 y
17 14 15 16 sylanbrc φ y + 1 y 0 +∞
18 11 17 2thd φ y + y + 1 y 0 +∞
19 6 8 10 1 2 18 3 4 5 rlimcnp2 φ y + S C x 0 +∞ if x = 0 C R K CnP J 0