| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rlocval.1 |  | 
						
							| 2 |  | rlocval.2 |  | 
						
							| 3 |  | rlocval.3 |  | 
						
							| 4 |  | rlocval.4 |  | 
						
							| 5 |  | rlocval.5 |  | 
						
							| 6 |  | rlocval.6 |  | 
						
							| 7 |  | rlocval.7 |  | 
						
							| 8 |  | rlocval.8 |  | 
						
							| 9 |  | rlocval.9 |  | 
						
							| 10 |  | rlocval.10 |  | 
						
							| 11 |  | rlocval.11 |  | 
						
							| 12 |  | rlocval.12 |  | 
						
							| 13 |  | rlocval.13 |  | 
						
							| 14 |  | rlocval.14 |  | 
						
							| 15 |  | rlocval.15 |  | 
						
							| 16 |  | rlocval.16 |  | 
						
							| 17 |  | rlocval.17 | Could not format  .c_ = { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) .<_ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } : No typesetting found for |- .c_ = { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) .<_ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } with typecode |- | 
						
							| 18 |  | rlocval.18 |  | 
						
							| 19 |  | rlocval.19 |  | 
						
							| 20 |  | rlocval.20 |  | 
						
							| 21 | 19 | elexd |  | 
						
							| 22 | 1 | fvexi |  | 
						
							| 23 | 22 | a1i |  | 
						
							| 24 | 23 20 | ssexd |  | 
						
							| 25 |  | ovexd | Could not format  ( ph -> ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) e. _V ) : No typesetting found for |- ( ph -> ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) e. _V ) with typecode |- | 
						
							| 26 |  | fvexd |  | 
						
							| 27 |  | fveq2 |  | 
						
							| 28 | 27 | adantr |  | 
						
							| 29 | 28 3 | eqtr4di |  | 
						
							| 30 |  | fvexd |  | 
						
							| 31 |  | vex |  | 
						
							| 32 | 31 | a1i |  | 
						
							| 33 | 30 32 | xpexd |  | 
						
							| 34 |  | fveq2 |  | 
						
							| 35 | 34 | ad2antrr |  | 
						
							| 36 | 35 1 | eqtr4di |  | 
						
							| 37 |  | simplr |  | 
						
							| 38 | 36 37 | xpeq12d |  | 
						
							| 39 | 38 10 | eqtr4di |  | 
						
							| 40 |  | simpr |  | 
						
							| 41 | 40 | opeq2d |  | 
						
							| 42 |  | simplll |  | 
						
							| 43 | 42 | fveq2d |  | 
						
							| 44 | 43 5 | eqtr4di |  | 
						
							| 45 |  | simplr |  | 
						
							| 46 | 45 | oveqd |  | 
						
							| 47 | 45 | oveqd |  | 
						
							| 48 | 44 46 47 | oveq123d |  | 
						
							| 49 | 45 | oveqd |  | 
						
							| 50 | 48 49 | opeq12d |  | 
						
							| 51 | 40 40 50 | mpoeq123dv |  | 
						
							| 52 | 51 14 | eqtr4di |  | 
						
							| 53 | 52 | opeq2d |  | 
						
							| 54 | 45 | oveqd |  | 
						
							| 55 | 54 49 | opeq12d |  | 
						
							| 56 | 40 40 55 | mpoeq123dv |  | 
						
							| 57 | 56 15 | eqtr4di |  | 
						
							| 58 | 57 | opeq2d |  | 
						
							| 59 | 41 53 58 | tpeq123d |  | 
						
							| 60 | 42 | fveq2d |  | 
						
							| 61 | 60 7 | eqtr4di |  | 
						
							| 62 | 61 | opeq2d |  | 
						
							| 63 | 60 | fveq2d |  | 
						
							| 64 | 7 | fveq2i |  | 
						
							| 65 | 8 64 | eqtri |  | 
						
							| 66 | 63 65 | eqtr4di |  | 
						
							| 67 | 42 | fveq2d |  | 
						
							| 68 | 67 9 | eqtr4di |  | 
						
							| 69 | 68 | oveqd |  | 
						
							| 70 | 69 | opeq1d |  | 
						
							| 71 | 66 40 70 | mpoeq123dv |  | 
						
							| 72 | 71 16 | eqtr4di |  | 
						
							| 73 | 72 | opeq2d |  | 
						
							| 74 |  | eqidd |  | 
						
							| 75 | 62 73 74 | tpeq123d |  | 
						
							| 76 | 59 75 | uneq12d |  | 
						
							| 77 | 42 | fveq2d |  | 
						
							| 78 | 77 12 | eqtr4di |  | 
						
							| 79 | 37 | adantr |  | 
						
							| 80 | 78 79 | oveq12d |  | 
						
							| 81 | 78 80 | oveq12d |  | 
						
							| 82 | 81 | opeq2d |  | 
						
							| 83 | 40 | eleq2d |  | 
						
							| 84 | 40 | eleq2d |  | 
						
							| 85 | 83 84 | anbi12d |  | 
						
							| 86 | 42 | fveq2d |  | 
						
							| 87 | 86 6 | eqtr4di |  | 
						
							| 88 | 46 87 47 | breq123d |  | 
						
							| 89 | 85 88 | anbi12d |  | 
						
							| 90 | 89 | opabbidv |  | 
						
							| 91 | 90 17 | eqtr4di | Could not format  ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } = .c_ ) : No typesetting found for |- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } = .c_ ) with typecode |- | 
						
							| 92 | 91 | opeq2d | Could not format  ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. = <. ( le ` ndx ) , .c_ >. ) : No typesetting found for |- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. = <. ( le ` ndx ) , .c_ >. ) with typecode |- | 
						
							| 93 | 42 | fveq2d |  | 
						
							| 94 | 93 13 | eqtr4di |  | 
						
							| 95 | 94 46 47 | oveq123d |  | 
						
							| 96 | 40 40 95 | mpoeq123dv |  | 
						
							| 97 | 96 18 | eqtr4di |  | 
						
							| 98 | 97 | opeq2d |  | 
						
							| 99 | 82 92 98 | tpeq123d | Could not format  ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } = { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) : No typesetting found for |- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } = { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) with typecode |- | 
						
							| 100 | 76 99 | uneq12d | Could not format  ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) = ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) ) : No typesetting found for |- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) = ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) ) with typecode |- | 
						
							| 101 | 42 79 | oveq12d |  | 
						
							| 102 | 101 11 | eqtr4di |  | 
						
							| 103 | 100 102 | oveq12d | Could not format  ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) : No typesetting found for |- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) with typecode |- | 
						
							| 104 | 33 39 103 | csbied2 | Could not format  ( ( ( r = R /\ s = S ) /\ x = .x. ) -> [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) : No typesetting found for |- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) with typecode |- | 
						
							| 105 | 26 29 104 | csbied2 | Could not format  ( ( r = R /\ s = S ) -> [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) : No typesetting found for |- ( ( r = R /\ s = S ) -> [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) with typecode |- | 
						
							| 106 |  | df-rloc |  | 
						
							| 107 | 105 106 | ovmpoga | Could not format  ( ( R e. _V /\ S e. _V /\ ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) e. _V ) -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) : No typesetting found for |- ( ( R e. _V /\ S e. _V /\ ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) e. _V ) -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) with typecode |- | 
						
							| 108 | 21 24 25 107 | syl3anc | Could not format  ( ph -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) : No typesetting found for |- ( ph -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) with typecode |- |