Metamath Proof Explorer


Theorem rnfdmpr

Description: The range of a one-to-one function F of an unordered pair into a set is the unordered pair of the function values. (Contributed by Alexander van der Vekens, 2-Feb-2018)

Ref Expression
Assertion rnfdmpr XVYWFFnXYranF=FXFY

Proof

Step Hyp Ref Expression
1 fnrnfv FFnXYranF=x|iXYx=Fi
2 1 adantl XVYWFFnXYranF=x|iXYx=Fi
3 fveq2 i=XFi=FX
4 3 eqeq2d i=Xx=Fix=FX
5 4 abbidv i=Xx|x=Fi=x|x=FX
6 fveq2 i=YFi=FY
7 6 eqeq2d i=Yx=Fix=FY
8 7 abbidv i=Yx|x=Fi=x|x=FY
9 5 8 iunxprg XVYWiXYx|x=Fi=x|x=FXx|x=FY
10 9 adantr XVYWFFnXYiXYx|x=Fi=x|x=FXx|x=FY
11 iunab iXYx|x=Fi=x|iXYx=Fi
12 df-sn FX=x|x=FX
13 12 eqcomi x|x=FX=FX
14 df-sn FY=x|x=FY
15 14 eqcomi x|x=FY=FY
16 13 15 uneq12i x|x=FXx|x=FY=FXFY
17 df-pr FXFY=FXFY
18 16 17 eqtr4i x|x=FXx|x=FY=FXFY
19 10 11 18 3eqtr3g XVYWFFnXYx|iXYx=Fi=FXFY
20 2 19 eqtrd XVYWFFnXYranF=FXFY
21 20 ex XVYWFFnXYranF=FXFY