Metamath Proof Explorer


Theorem rngcval

Description: Value of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020) (Revised by AV, 8-Mar-2020)

Ref Expression
Hypotheses rngcval.c C=RngCatU
rngcval.u φUV
rngcval.b φB=URng
rngcval.h φH=RngHomB×B
Assertion rngcval φC=ExtStrCatUcatH

Proof

Step Hyp Ref Expression
1 rngcval.c C=RngCatU
2 rngcval.u φUV
3 rngcval.b φB=URng
4 rngcval.h φH=RngHomB×B
5 df-rngc RngCat=uVExtStrCatucatRngHomuRng×uRng
6 fveq2 u=UExtStrCatu=ExtStrCatU
7 6 adantl φu=UExtStrCatu=ExtStrCatU
8 ineq1 u=UuRng=URng
9 8 sqxpeqd u=UuRng×uRng=URng×URng
10 3 sqxpeqd φB×B=URng×URng
11 10 eqcomd φURng×URng=B×B
12 9 11 sylan9eqr φu=UuRng×uRng=B×B
13 12 reseq2d φu=URngHomuRng×uRng=RngHomB×B
14 4 eqcomd φRngHomB×B=H
15 14 adantr φu=URngHomB×B=H
16 13 15 eqtrd φu=URngHomuRng×uRng=H
17 7 16 oveq12d φu=UExtStrCatucatRngHomuRng×uRng=ExtStrCatUcatH
18 2 elexd φUV
19 ovexd φExtStrCatUcatHV
20 5 17 18 19 fvmptd2 φRngCatU=ExtStrCatUcatH
21 1 20 eqtrid φC=ExtStrCatUcatH