Metamath Proof Explorer


Theorem rngcvalALTV

Description: Value of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypotheses rngcvalALTV.c C=RngCatALTVU
rngcvalALTV.u φUV
rngcvalALTV.b φB=URng
rngcvalALTV.h φH=xB,yBxRngHomoy
rngcvalALTV.o φ·˙=vB×B,zBg2ndvRngHomoz,f1stvRngHomo2ndvgf
Assertion rngcvalALTV φC=BasendxBHomndxHcompndx·˙

Proof

Step Hyp Ref Expression
1 rngcvalALTV.c C=RngCatALTVU
2 rngcvalALTV.u φUV
3 rngcvalALTV.b φB=URng
4 rngcvalALTV.h φH=xB,yBxRngHomoy
5 rngcvalALTV.o φ·˙=vB×B,zBg2ndvRngHomoz,f1stvRngHomo2ndvgf
6 df-rngcALTV RngCatALTV=uVuRng/bBasendxbHomndxxb,ybxRngHomoycompndxvb×b,zbg2ndvRngHomoz,f1stvRngHomo2ndvgf
7 6 a1i φRngCatALTV=uVuRng/bBasendxbHomndxxb,ybxRngHomoycompndxvb×b,zbg2ndvRngHomoz,f1stvRngHomo2ndvgf
8 vex uV
9 8 inex1 uRngV
10 9 a1i φu=UuRngV
11 ineq1 u=UuRng=URng
12 11 adantl φu=UuRng=URng
13 3 adantr φu=UB=URng
14 12 13 eqtr4d φu=UuRng=B
15 simpr φu=Ub=Bb=B
16 15 opeq2d φu=Ub=BBasendxb=BasendxB
17 eqidd φu=Ub=BxRngHomoy=xRngHomoy
18 15 15 17 mpoeq123dv φu=Ub=Bxb,ybxRngHomoy=xB,yBxRngHomoy
19 4 ad2antrr φu=Ub=BH=xB,yBxRngHomoy
20 18 19 eqtr4d φu=Ub=Bxb,ybxRngHomoy=H
21 20 opeq2d φu=Ub=BHomndxxb,ybxRngHomoy=HomndxH
22 15 sqxpeqd φu=Ub=Bb×b=B×B
23 eqidd φu=Ub=Bg2ndvRngHomoz,f1stvRngHomo2ndvgf=g2ndvRngHomoz,f1stvRngHomo2ndvgf
24 22 15 23 mpoeq123dv φu=Ub=Bvb×b,zbg2ndvRngHomoz,f1stvRngHomo2ndvgf=vB×B,zBg2ndvRngHomoz,f1stvRngHomo2ndvgf
25 5 ad2antrr φu=Ub=B·˙=vB×B,zBg2ndvRngHomoz,f1stvRngHomo2ndvgf
26 24 25 eqtr4d φu=Ub=Bvb×b,zbg2ndvRngHomoz,f1stvRngHomo2ndvgf=·˙
27 26 opeq2d φu=Ub=Bcompndxvb×b,zbg2ndvRngHomoz,f1stvRngHomo2ndvgf=compndx·˙
28 16 21 27 tpeq123d φu=Ub=BBasendxbHomndxxb,ybxRngHomoycompndxvb×b,zbg2ndvRngHomoz,f1stvRngHomo2ndvgf=BasendxBHomndxHcompndx·˙
29 10 14 28 csbied2 φu=UuRng/bBasendxbHomndxxb,ybxRngHomoycompndxvb×b,zbg2ndvRngHomoz,f1stvRngHomo2ndvgf=BasendxBHomndxHcompndx·˙
30 elex UVUV
31 2 30 syl φUV
32 tpex BasendxBHomndxHcompndx·˙V
33 32 a1i φBasendxBHomndxHcompndx·˙V
34 7 29 31 33 fvmptd φRngCatALTVU=BasendxBHomndxHcompndx·˙
35 1 34 eqtrid φC=BasendxBHomndxHcompndx·˙