Metamath Proof Explorer


Theorem rngmneg2

Description: Negation of a product in a non-unital ring ( mulneg2 analog). In contrast to ringmneg1 , the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025)

Ref Expression
Hypotheses rngneglmul.b B=BaseR
rngneglmul.t ·˙=R
rngneglmul.n N=invgR
rngneglmul.r φRRng
rngneglmul.x φXB
rngneglmul.y φYB
Assertion rngmneg2 φX·˙NY=NX·˙Y

Proof

Step Hyp Ref Expression
1 rngneglmul.b B=BaseR
2 rngneglmul.t ·˙=R
3 rngneglmul.n N=invgR
4 rngneglmul.r φRRng
5 rngneglmul.x φXB
6 rngneglmul.y φYB
7 eqid +R=+R
8 eqid 0R=0R
9 rnggrp RRngRGrp
10 4 9 syl φRGrp
11 1 7 8 3 10 6 grplinvd φNY+RY=0R
12 11 oveq2d φX·˙NY+RY=X·˙0R
13 1 2 8 rngrz RRngXBX·˙0R=0R
14 4 5 13 syl2anc φX·˙0R=0R
15 12 14 eqtrd φX·˙NY+RY=0R
16 1 2 rngcl RRngXBYBX·˙YB
17 4 5 6 16 syl3anc φX·˙YB
18 1 3 10 6 grpinvcld φNYB
19 1 2 rngcl RRngXBNYBX·˙NYB
20 4 5 18 19 syl3anc φX·˙NYB
21 1 7 8 3 grpinvid2 RGrpX·˙YBX·˙NYBNX·˙Y=X·˙NYX·˙NY+RX·˙Y=0R
22 10 17 20 21 syl3anc φNX·˙Y=X·˙NYX·˙NY+RX·˙Y=0R
23 1 7 2 rngdi RRngXBNYBYBX·˙NY+RY=X·˙NY+RX·˙Y
24 23 eqcomd RRngXBNYBYBX·˙NY+RX·˙Y=X·˙NY+RY
25 4 5 18 6 24 syl13anc φX·˙NY+RX·˙Y=X·˙NY+RY
26 25 eqeq1d φX·˙NY+RX·˙Y=0RX·˙NY+RY=0R
27 22 26 bitrd φNX·˙Y=X·˙NYX·˙NY+RY=0R
28 15 27 mpbird φNX·˙Y=X·˙NY
29 28 eqcomd φX·˙NY=NX·˙Y