Description: Negation of a product in a non-unital ring ( mulneg2 analog). In contrast to ringmneg1 , the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngneglmul.b | |
|
rngneglmul.t | |
||
rngneglmul.n | |
||
rngneglmul.r | |
||
rngneglmul.x | |
||
rngneglmul.y | |
||
Assertion | rngmneg2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngneglmul.b | |
|
2 | rngneglmul.t | |
|
3 | rngneglmul.n | |
|
4 | rngneglmul.r | |
|
5 | rngneglmul.x | |
|
6 | rngneglmul.y | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | rnggrp | |
|
10 | 4 9 | syl | |
11 | 1 7 8 3 10 6 | grplinvd | |
12 | 11 | oveq2d | |
13 | 1 2 8 | rngrz | |
14 | 4 5 13 | syl2anc | |
15 | 12 14 | eqtrd | |
16 | 1 2 | rngcl | |
17 | 4 5 6 16 | syl3anc | |
18 | 1 3 10 6 | grpinvcld | |
19 | 1 2 | rngcl | |
20 | 4 5 18 19 | syl3anc | |
21 | 1 7 8 3 | grpinvid2 | |
22 | 10 17 20 21 | syl3anc | |
23 | 1 7 2 | rngdi | |
24 | 23 | eqcomd | |
25 | 4 5 18 6 24 | syl13anc | |
26 | 25 | eqeq1d | |
27 | 22 26 | bitrd | |
28 | 15 27 | mpbird | |
29 | 28 | eqcomd | |