Metamath Proof Explorer


Theorem rngohommul

Description: Ring homomorphisms preserve multiplication. (Contributed by Jeff Madsen, 3-Jan-2011)

Ref Expression
Hypotheses rnghommul.1 G=1stR
rnghommul.2 X=ranG
rnghommul.3 H=2ndR
rnghommul.4 K=2ndS
Assertion rngohommul RRingOpsSRingOpsFRRngHomSAXBXFAHB=FAKFB

Proof

Step Hyp Ref Expression
1 rnghommul.1 G=1stR
2 rnghommul.2 X=ranG
3 rnghommul.3 H=2ndR
4 rnghommul.4 K=2ndS
5 eqid GIdH=GIdH
6 eqid 1stS=1stS
7 eqid ran1stS=ran1stS
8 eqid GIdK=GIdK
9 1 3 2 5 6 4 7 8 isrngohom RRingOpsSRingOpsFRRngHomSF:Xran1stSFGIdH=GIdKxXyXFxGy=Fx1stSFyFxHy=FxKFy
10 9 biimpa RRingOpsSRingOpsFRRngHomSF:Xran1stSFGIdH=GIdKxXyXFxGy=Fx1stSFyFxHy=FxKFy
11 10 simp3d RRingOpsSRingOpsFRRngHomSxXyXFxGy=Fx1stSFyFxHy=FxKFy
12 11 3impa RRingOpsSRingOpsFRRngHomSxXyXFxGy=Fx1stSFyFxHy=FxKFy
13 simpr FxGy=Fx1stSFyFxHy=FxKFyFxHy=FxKFy
14 13 2ralimi xXyXFxGy=Fx1stSFyFxHy=FxKFyxXyXFxHy=FxKFy
15 12 14 syl RRingOpsSRingOpsFRRngHomSxXyXFxHy=FxKFy
16 fvoveq1 x=AFxHy=FAHy
17 fveq2 x=AFx=FA
18 17 oveq1d x=AFxKFy=FAKFy
19 16 18 eqeq12d x=AFxHy=FxKFyFAHy=FAKFy
20 oveq2 y=BAHy=AHB
21 20 fveq2d y=BFAHy=FAHB
22 fveq2 y=BFy=FB
23 22 oveq2d y=BFAKFy=FAKFB
24 21 23 eqeq12d y=BFAHy=FAKFyFAHB=FAKFB
25 19 24 rspc2v AXBXxXyXFxHy=FxKFyFAHB=FAKFB
26 15 25 mpan9 RRingOpsSRingOpsFRRngHomSAXBXFAHB=FAKFB