Description: Ring homomorphisms preserve multiplication. (Contributed by Jeff Madsen, 3-Jan-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rnghommul.1 | |
|
rnghommul.2 | |
||
rnghommul.3 | |
||
rnghommul.4 | |
||
Assertion | rngohommul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnghommul.1 | |
|
2 | rnghommul.2 | |
|
3 | rnghommul.3 | |
|
4 | rnghommul.4 | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | 1 3 2 5 6 4 7 8 | isrngohom | |
10 | 9 | biimpa | |
11 | 10 | simp3d | |
12 | 11 | 3impa | |
13 | simpr | |
|
14 | 13 | 2ralimi | |
15 | 12 14 | syl | |
16 | fvoveq1 | |
|
17 | fveq2 | |
|
18 | 17 | oveq1d | |
19 | 16 18 | eqeq12d | |
20 | oveq2 | |
|
21 | 20 | fveq2d | |
22 | fveq2 | |
|
23 | 22 | oveq2d | |
24 | 21 23 | eqeq12d | |
25 | 19 24 | rspc2v | |
26 | 15 25 | mpan9 | |