Metamath Proof Explorer


Theorem rngqiprngfu

Description: The function value of F at the constructed expected ring unity of R is the ring unity of the product of the quotient with the two-sided ideal and the two-sided ideal. (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r φRRng
rngqiprngfu.i φI2IdealR
rngqiprngfu.j J=R𝑠I
rngqiprngfu.u φJRing
rngqiprngfu.b B=BaseR
rngqiprngfu.t ·˙=R
rngqiprngfu.1 1˙=1J
rngqiprngfu.g ˙=R~QGI
rngqiprngfu.q Q=R/𝑠˙
rngqiprngfu.v φQRing
rngqiprngfu.e φE1Q
rngqiprngfu.m -˙=-R
rngqiprngfu.a +˙=+R
rngqiprngfu.n U=E-˙1˙·˙E+˙1˙
rngqiprngfu.f F=xBx˙1˙·˙x
Assertion rngqiprngfu φFU=E˙1˙

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r φRRng
2 rngqiprngfu.i φI2IdealR
3 rngqiprngfu.j J=R𝑠I
4 rngqiprngfu.u φJRing
5 rngqiprngfu.b B=BaseR
6 rngqiprngfu.t ·˙=R
7 rngqiprngfu.1 1˙=1J
8 rngqiprngfu.g ˙=R~QGI
9 rngqiprngfu.q Q=R/𝑠˙
10 rngqiprngfu.v φQRing
11 rngqiprngfu.e φE1Q
12 rngqiprngfu.m -˙=-R
13 rngqiprngfu.a +˙=+R
14 rngqiprngfu.n U=E-˙1˙·˙E+˙1˙
15 rngqiprngfu.f F=xBx˙1˙·˙x
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 rngqiprngfulem3 φUB
17 eqid BaseQ=BaseQ
18 eqid Q×𝑠J=Q×𝑠J
19 1 2 3 4 5 6 7 8 9 17 18 15 rngqiprngimfv φUBFU=U˙1˙·˙U
20 16 19 mpdan φFU=U˙1˙·˙U
21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 rngqiprngfulem4 φU˙=E˙
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 rngqiprngfulem5 φ1˙·˙U=1˙
23 21 22 opeq12d φU˙1˙·˙U=E˙1˙
24 20 23 eqtrd φFU=E˙1˙